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INTEGRATED CIRCUIT DEFECT 
DIAGNOSIS USING MACHINE LEARNING 

RELATED APPLICATIONS 

[ 0001 ] This application claims the benefit of the U.S. 
Provisional Patent Application No. 62 / 922,401 , filed Aug. 7 , 
2019 , the contents of which are incorporated herein in their 
entirety . 

GOVERNMENT RIGHTS 

[ 0002 ] This invention was made with government support 
under contract No. CCF - 1816512 awarded by the National 
Science Foundation . The government has certain rights in 
this invention . 

BACKGROUND OF THE INVENTION 

[ 0003 ] With respect to the manufacture of integrated cir 
cuits , yield is defined as the proportion of working chips 
fabricated . Yield can be relatively low when a new manu 
facturing process or a new chip design is introduced . The 
process of identifying and rectifying the sources of yield loss 
to improve both chip design and manufacturing is called 
yield learning . The rate of yield learning is extremely critical 
to the success of the semiconductor industry and must thus 
be accelerated to meet the triple objectives of diminishing 
time - to - volume , time - to market and time - to - money require 
ments . 
[ 0004 ] Various strategies are currently used to identify and 
characterize the sources of yield loss . Inline inspection , for 
example , optically examines a wafer to characterize defects . 
[ 0005 ] However , with technology continuing to shrink , its 
effectiveness to locate a defect further decreases . Special 
ized test structures such as comb drives and ring oscillators 
are transparent to failure but do not reflect the diversity of 
the layout patterns found in an actual customer chip . More 
importantly , actual chips undergo additional fabrication 
steps that may introduce defect mechanisms that are simply 
not possible in simple test structures . Hence , in recent years , 
the use of legacy designs retrofitted for the latest technology 
node ( and logic test chips ) have been gaining traction as 
yield learning vehicles . Specifically , the knowledge of how 
a customer chip fails manufacturing test is used to improve 
yield . This process is called failure analysis ( FA ) . FA 
typically starts with software - based diagnosis . 
[ 0006 ] Software - based defect diagnosis plays an impor 
tant role in failure analysis . Diagnosis is a process to identify 
the location and , ideally , characterize the nature and root 
cause of a defective chip by examining its tester response . 
Based on the feedback produced by diagnosis , a small but 
significant number of chips are selected to be inspected 
physically . The aim of physical failure analysis ( PFA ) is to 
provide crucial understanding of failure mechanisms to 
improve the design and / or the manufacturing process to 
increase yield . Diagnosis is therefore an indispensable tool 
for facilitating yield learning . 
[ 0007 ] Current diagnosis methods can essentially be dif 
ferentiated based on the type of the fault model used ( the 
( temporary ) stuck - at fault model vs. the X - fault model ) , the 
scoring technique employed ( deterministic vs. statistical ) , 
how precisely a defect is localized ( i.e. , whether a defect 
candidate is reported at a logic , back - end layout or front - end 
layout level ) , and whether multiple defects affecting a single 
chip can be analyzed / identified . 

[ 0008 ] With decreasing feature sizes , and increasing inter 
connect density and manufacturing complexity , more chips 
are failing due to multiple defects , particularly when sys 
tematic defects ( that arise from unforeseeable process - de 
sign interactions ) are the dominant yield limiters ( either in 
the early stages of yield learning or due to yield excursion ) . 
[ 0009 ] Characterizing each defect in a chip affected by 
multiple defects is especially challenging , primarily for two 
reasons . First , erroneous values propagating from more than 
one defect location can interact with each other , resulting in 
either error masking ( where one error blocks the propagation 
of another ) or error unmasking ( where one error assists the 
propagation of another ) . Second , the solution search space is 
exponential in defect multiplicity ( unknown beforehand ) , 
which makes finding an optimum solution extremely diffi 
cult . 

[ 0010 ] Numerous methods have been suggested to diag 
nose multiple defects . A first category of methods relies on 
identifying a defect via failing patterns ( a ) that can be 
explained by a single location , and ( b ) where errors propa 
gating from multiple locations do not interfere with each 
other . However , such patterns can be limited and / or find an 
incorrect location due to a considerable number of interac 
tions among errors manifesting from multiple defect loca 
tions . A second category of methods focuses on finding each 
defect incrementally but involve a significant number of 
multiple fault simulations , and hence do not scale well with 
design size and defect multiplicity . A third category of 
methods that guides efforts in exploring the exponential 
search space via optimization techniques faces a similar 
drawback and is thus impractical . A fourth category of 
methods avoids explicit fault simulation to identify multiple 
defects . For each failing pattern , each candidate location in 
a design is scored based on its ability to propagate an error 
to a design output while considering error masking and 
unmasking . Each method then , iteratively and greedily , 
selects the most likely set of defect locations based on a 
candidate ranking procedure . 
[ 0011 ] Another way to avoid the inherent problem of error 
masking and unmasking in multiple - defect diagnosis is to 
employ the X - fault model . The X - fault model assumes an 
unknown ( X ) value at a potential defect location and allows 
errors to propagate conservatively . 
[ 0012 ] Furthermore , prior work discussed up to this point 
uses various candidate - ranking heuristics to identify the best 
set of defect locations that can represent actual defects . 
However , such heuristics are explicitly created based on 
intuition and domain knowledge and are thus not guaranteed 
to work for every defect mechanism , design and / or process 
node . 

[ 0013 ] On the contrary , a candidate scoring procedure 
implicitly derived from test fail data can uncover the hidden 
correlations between a correct candidate and the observed 
circuit response , which otherwise could have been over 
looked by manually constructed scoring models . Thus , an 
alternative to rank candidates is machine learning . 
[ 0014 ] Machine learning ( ML ) has been successfully 
applied in chip testing . Specifically , in the area of diagnosis , 
ML has been used to optimize test data collection to make 
diagnosis more efficient , improve the accuracy and resolu 
tion of diagnosis itself , and pinpoint yield - limiting layout 
geometries by analyzing a volume of diagnosis data . 
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SUMMARY OF THE INVENTION 

[ 0015 ] Described herein is a novel , three - phase , physi 
cally - aware diagnosis methodology capable of effectively 
diagnosing multiple defects in an integrated circuit , and , in 
turn , aiding in accelerating the design and process develop 
ment , and , as a result , increasing the yield . 
[ 0016 ] The first phase identifies a defect that resembles 
traditional fault models . The second and the third phases 
utilize the X - fault model and machine learning to identify 
correct candidates . Results from a thorough fault injection 
and simulation experiment demonstrate that the method 
returns an ideal diagnosis twice as often as current methods 
of commercial diagnosis . Its effectiveness is further evi 
denced through a silicon experiment , where , on average , the 
method returns 5.3 fewer candidates per diagnosis as com 
pared to state - of - the - art commercial diagnosis methods , 
without losing accuracy . 
[ 0017 ] It should be noted that this summary is not intended 
to identify any critical or key elements , but instead merely 
presents certain introductory concepts so that the full scope 
of the disclosure may be appreciated upon reading the full 
specification and figures , of which this summary is part . 

[ 0032 ] Fault Model - A fault model is an abstraction from 
actual defects at a high level comprising a set of assumptions 
that describes the behavior of a defect and / or its impact on 
the circuit . The observed behavior of a failed circuit is 
compared against these assumptions to check if they exactly 
match . 
[ 0033 ] Pattern - A set of logic values applied to the inputs 
of a circuit . 
[ 0034 ] Cover — A set of faults that collectively explain all 
the failing patterns , based on simulations in which the 
responses of several faults match the measured responses for 
some set of test patterns that have failed . 

DETAILED DESCRIPTION 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0018 ] FIG . 1 is a block diagram showing an overview of 
the method of the present invention , showing the three 
phase diagnosis methodology . 
[ 0019 ] FIG . 2 shows the portions of the block diagram of 
FIG . 1 which are common to all three phases of the 
three - phase methodology . 
[ 0020 ] FIG . 3 is a graphical explanation of the various 
types of faults . 
[ 0021 ] FIG . 4 shows Phases 1 and 2 of the method of the 
present invention where multiple failing patterns are present 
but non - interacting . 
[ 0022 ] FIG . 5 shows the use of Phase 3 of the method of 
the present invention when multiple , interacting defects are 
present . 
[ 0023 ] FIG . 6 shows the circumstances when Phase 1 of 
the method is sufficient to diagnose a defect . 
[ 0024 ] FIG . 7 shows the circumstances when Phase 2 of 
the method is sufficient to diagnose the defect . 
[ 0025 ] FIG . 8 shows when Phase 3 of the method must be 
used to diagnose the defect . 
[ 0026 ] FIG . 9 is a block diagram showing the use of 
machine learning models in Phases 2 and 3 of the method . 
[ 0027 ] FIG . 10 is a block diagram showing the training of 
the machine learning models used in Phases 2 and 3 of the 
method . 
[ 0028 ] FIG . 11 are graphs showing the diagnosability , 
resolution and ideal diagnosis rates of the method compared 
with commercial diagnosis when used on simulated defects . 
[ 0029 ] FIG . 12 is a graph showing the distribution of 
defect multiplicity estimated by the method of the present 
invention versus commercial diagnosis tools when used on 
simulated defects . 
[ 0030 ] FIG . 13 is a graph showing the number of candi 
dates returned by the method of the present invention for 
silicon - based fail logs . 

[ 0035 ] The method disclosed herein for characterizing 
multiple defects on a single chip is built on a single - defect 
diagnosis methodology introduced in U.S. Provisional Pat 
ent Ser . No. 62 / 922,401 , the contents of which are incorpo 
rated herein by reference in their entirety . The single - defect 
method described in the provisional filing employs the 
X - fault model to avoid eliminating an actual defect location , 
and machine learning to identify the best candidate that 
could represent a defect . The single - defect model achieves 
superior performance for single - defect diagnosis when com 
pared with prior art state - of - the - art commercial tools . It 
returns a single correct candidate for 86.6 % more fail logs . 
[ 0036 ] This method disclosed herein describes a single 
chip , multiple - defect diagnosis methodology that is built on 
the single - defect model described in the provisional filing to 
effectively address the task of characterizing more than one 
defect . The method addresses the drawbacks of prior work 
related to multiple - defect diagnosis discussed in the Back 
ground . 
[ 0037 ] Notable features of the method of the present 
invention include : ( 1 ) In addition to using a deterministic 
fault model ( where the erroneous value is either logic - 0 or 
logic - 1 ) , the X - fault model is employed as well to prevent 
the elimination of a correct candidate . X - values stemming 
from more than one location in a design cannot obstruct the 
propagation of another error , thus circumventing one of the 
main drawbacks of multiple - defect diagnosis ( that of error 
masking and unmasking ) ; ( 2 ) As opposed to manually 
developing a complex candidate scoring heuristic to identify 
the best candidate , the present invention utilizes machine 
learning to create a scoring model that learns the latent 
correlations between a correct candidate and the tester 
response ; and ( 3 ) The method uses design layout informa 
tion to identify the physical defect type and behavior of each 
candidate . 
[ 0038 ] Back - end and front - end layout analysis techniques 
further strengthen the method by improving its physical 
resolution . It should be noted that an approach that improves 
the quality of diagnosis by either reordering , selecting or 
adding test patterns complement the method . 
[ 0039 ] The end result of the method is an identification of 
one or more defect candidates , each defect candidate com 
prising a physical location of the defect in the circuit and a 
fault type of the defect . In one embodiment , each defect 
candidate determined to be correct or incorrect , based on 
whether a prediction probability determined by a trained 
model is greater than a decision threshold . 
[ 0040 ] FIG . 1 shows the overview of the present inven 
tion , which comprises a three - phase diagnosis methodology . 
The sequence of analysis steps involved in each phase are 

DEFINITIONS 

[ 0031 ] The following terms , as used herein , have the 
following meanings . 
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marked . FIG . 2 shows the first few steps of the method , 
which are common to all three phases . Phase 1 focuses on 
finding defects that mirror the behavior of well - established 
fault models . Such defects are henceforth referred to as 
class - 1 defects . Phase 2 identifies a defect whose behavior 
deviates from that of each fault model considered in Phase 
1 and whose error propagation path does not interfere with 
errors stemming from other defect locations for each failing 
pattern . Such defects are henceforth referred to as class - 2 
defects . Finally , any failing chip left undiagnosed is ana 
lyzed in Phase 3. Such a failing chip is affected by multiple 
defects where errors manifesting from at least two defects 
interact with each other such that no single candidate can 
explain the observed response for at least one failing pattern . 
Table 1 summarizes the class and multiplicity of defects 
targeted by each phase of the method . 

TABLE 1 

Class and Multiplicity of Defects Targeted by Each Phase 

Class 1 
Defects 

Class 2 
Defects 

Error 
Propagation Path Phase 

21 
0 

21 
21 

0 
21 
21 
> 1 

Disjoint for each 
failing pattern 

Phase 1 
Phase 2 
Phases 1 & 2 
Phase 3 Overlapping for at least 

one failing pattern 

[ 0041 ] Phase 1-3 Common Steps 
[ 0042 ] The method 100 begins with path tracing 102 , 
where each failing output for each failing pattern is traced 
back to infer potential defective sites . For each failing 
pattern , path tracing starts from each erroneous circuit 
output and traces back through the circuit towards the inputs , 
deducing the potential defective ( logical ) signals along the 
way . Physical defect locations corresponding to each impli 
cated logical location are then extracted from layout analy 
sis . Specifically , the topology and the physical neighborhood 
of each net are examined to identify probable open and 
bridge defect locations . Next , for each failing atter 
stuck - at fault at each candidate location is simulated to find 
faults explain that pattern . Sets of stuck - at faults are selected 
using the minimum set - cover algorithm such that faults in 
each cover explain all the failing patterns . Path tracing 102 
guarantees that it will find a defect location that assists in 
error propagation to at least one design output , even for 
multiple defects . 
[ 004 ] For each failing pattern , an X fault is simulated at 
each candidate location ( one at a time ) to identify faults that 
can explain that pattern . ( An X fault “ explains ” a failing 
pattern when the set of simulated outputs that possess an X 
value subsume the erroneous circuit outputs ) . Each such 
explained pattern is classified as a type - 1 pattern at 104. It 
should be noted that , in prior art methods , a type - 1 pattern 
is defined with respect to a ( temporary ) stuck - at fault , not an 
X fault . However , the X - fault model is not susceptible to 
error masking and averts the elimination of a candidate that 
represents an actual defect . 
[ 0044 ] Each failing pattern is further analyzed to find a 
group of locations such that their error propagation paths are 
disjoint and such that they can collectively explain that 
failing pattern . Each such pattern is classified as a type - 2 
pattern 106. This procedure is performed with respect to 
both stuck - at and X fault simulations . ( A failing pattern is 

a 

analyzed multiple times so that the final cover consisting of 
defect candidates resulting from the next couple of steps is 
optimal ) . The remaining failing patterns , if any , are classi 
fied as type - 3 patterns . Each failing pattern is thus catego 
rized as either type - 1 , type - 2 or type - 3 , depending on 
whether the pattern is explained by one fault , or multiple 
faults , or not explained at all . 
[ 0045 ] Next , physical defect locations associated with 
logical candidates that explain a type - 1 or type - 2 pattern are 
extracted from the design layout by examining their topol 
ogy and the physical neighborhood . Each logical candidate 
is then mapped to a physical defect candidate while keeping 
track of the set of failing patterns it explains . For example , 
if a logical candidate “ A ” explains pattern t1 , and candidate 
“ B ” explains pattern t2 , and “ A ” and “ B ” form a physical 
bridge pair , then the defect candidate ( A ; B ) explains both the 
patterns t1 and t2 . 
[ 0046 ] In one embodiment , possible candidate fault types 
considered in one embodiment of the invention are STUCK , 
CELL , BRIDGE and OPEN . Other embodiments of the 
invention may utilize more or less possible fault types or 
fault types different from those of the explained embodi 
ment . The simulated responses are analyzed to classify each 
candidate as either STUCK , CELL , BRIDGE , or OPEN at 
108. FIG . 3 graphically shows the differences between the 
types of faults . 
[ 0047 ] The next step is to determine covers at 110 con 
sisting of defect candidates via the set - cover approach such 
that ( a ) the size of a cover is minimum , i.e. , a cover consists 
of a minimum number of defect candidates , and ( b ) defect 
candidates in a cover collectively explain each failing pat 
tern that is either type - 1 or type - 2 . A candidate cover is then 
selected that explains a set of failing patterns . If each failing 
pattern is explained , ( i.e. , classified as either type - l or 
type - 2 ) at 112 , then there are no type - 3 patterns , and it 
implies that the chip under diagnosis is affected by defects 
with disjoint error propagation paths for each failing pattern . 
If each failing pattern is explained , then the method uses to 
Phases 1 and 2 for those patterns , otherwise , Phase 3 is used . 
The design ( and the tester response ) can essentially be 
partitioned such that each individual defect is diagnosed 
independently either in Phase 1 or Phase 2. If each failing 
pattern is either type - 1 or type - 2 , this indicates that faults do 
not interact with each other for any failing pattern . Hence , 
each defect can be diagnosed , as shown in FIG . 4. For each 
defect , the behavior of the defect is checked against some 
rules at 402 established for common fault models . If the 
rules are not satisfied , then a machine learning model is used 
at 404. For type - 1 and type - 2 patterns , each defect is 
analyzed separately . FIG . 5 shows the use of Phase 3 when 
interacting defects are present . The left branch of the tree is 
similar to FIG . 4 for Phases 1-2 . Then , the defect covers are 
simulated for type - 3 patterns by using ML . 
[ 0048 ] Phase 1 
[ 0049 ] Phase 1 focuses on diagnosing defects that mimic 
the behavior of traditional fault models . Specifically , a set of 
strict rules , shown in Table 2 , are constructed for each 
candidate defect type to identify the correct cover of can 
didates . A defect candidate of a cover is deemed correct if it 
satisfies the rules at 114 , and therefore represents a class - 1 
defect . Defect candidates of a cover that do not comply with 
the rules are further analyzed in Phase 2 , which is especially 
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geared towards the diagnosis of class - 2 defects . It should be 
noted that the covers with the least number of class - 2 defects 
are passed on to Phase 2 . 

TABLE 2 

Rules for Each Candidate Fault Type in Phase 1 

Fault 
Type Rule 

STUCK 
OPEN 
CELL 
BRIDGE 

Candidate passes for each passing pattern 
Candidate passes for each passing pattern 
Cell passes consistency check 
Bridged nets have the opposite polarity for 
failing patterns . 
Bridged nets have the same polarity for 
passing patterns that sensitize one of the nets 
to a design point . 

Common rule : Candidate explains each failing pattern . Here , a stuck - at fault is said to 
explain a failing pattern if the outputs that failed during simulation are identical to the 
observed failing outputs that are reachable from the fault location . 

[ 0050 ] These rules are further explained as follows . 
[ 0051 ] STUCK : when a cover contains only one fault . If 
the fault simulation response is identical to the tester 
response , the candidate is deemed correct . 
[ 0052 ] CELL : when a cell candidate is consistent . That is , 
sets of logic values established on the cell inputs for Tester 
Fail / Simulation - Fail ( TFSF ) and Tester - Pass / Simulation 
Fail ( TPSF ) patterns are disjoint . Here , a TFSF ( TPSF ) is a 
pattern that fails ( passes ) on the tester and detects a stuck - at 
fault at the candidate location . Any cell candidate that is 
found consistent is adjudged correct . Each consistent cell 
can further be inspected to derive intra - cell candidates . 
[ 0053 ] BRIDGE : when a cover consists of faults corre 
sponding to physically adjacent nets . The candidate is 
deemed correct if the bridged nets have opposite polarities 
for each TFSF pattern and same polarities for each TPSF 
pattern . 
[ 0054 ] OPEN : when a cover contains faults affecting the 
same signal . In addition to explaining each failing pattern , 
the candidate is deemed correct if at least one of the cover's 
constituent faults passes ( but is excited ) for each passing 
pattern . 
[ 0055 ] If no candidate of a failing chip complies with 
these rules , it is passed on to the Phase w of the diagnosis 
flow that especially deals with defects having complex 
behavior . 
[ 0056 ] FIG . 6 shows when only Phase 1 is necessary to 
successfully diagnose and classify a defect . When multiple 
defects are present , if the defects do not interact with each 
other and the defect behavior matches with a fault model , 
then the rule - based method is used . 
[ 0057 ] Phase 2 
[ 0058 ] Phase 2 begins similarly to Phase 1 with path 
tracing . Next , each candidate is simulated for each failing 
pattern using the X fault model . The resulting simulation 
responses are compared to the tester response to find can 
didates that explain that pattern . The X - value simulation of 
a candidate is said to explain a failing pattern if the erro 
neous circuit outputs are subsumed by the set of simulated 
outputs that possess an X value . Then , sets of X faults are 
selected using the minimum set - cover algorithm such that 
faults in each cover collectively explain all the tailing 
patterns . 
[ 0059 ] Each candidate cover is further analyzed using 
stuck - at simulation . Specifically , for each failing pattern , 

stuck - at faults at the locations corresponding to the X faults 
in a cover are simulated . The stuck - at fault responses are 
then compared to the observed circuit response to find the 
fault that best explains that pattern . Here , the criterion for 
best explaining a pattern is that the hamming distance 
between the fault simulation response and observed test 
response is minimum . Thus , each candidate , up to this point , 
is characterized by a cover of X faults and a cover of stuck - at 
faults . 
[ 0060 ] defect candidate , at this point of diagnosis , has 
the following properties : ( a ) it portrays behavior that cannot 
be modeled by the fault models employed in Phase 1 ; and ( b ) 
an error disseminating from the candidate location does not 
block or assist in error propagation of other possible defects 
in the circuit for any failing pattern . The primary objective 
of Phase 2 is to apply machine learning to discern the correct 
candidate . 
[ 0061 ] The next step in Phase 2 is assigning a fault type 
( STUCK , CELL , BRIDGE , and OPEN ) to each candidate , 
which is accomplished in exactly the same way as Phase 1 . 
Next , a set of features for each candidate is extracted using 
test and manufacturing domain knowledge . The extracted 
set of features are specific properties of a candidate that aim 
to distinguish a correct candidate from an incorrect one . 
Each feature value is calculated by comparing the test 
outputs / patterns observed by the tester and predicted by 
simulation . The features used here are derived from both the 
X - fault and the stuck - at fault simulation of a candidate . In 
addition , the features extracted here are more detailed . For 
example , the number of tester - pass / simulation - fail ( TPSF ) 
outputs arc counted separately for tester - fail / simulation - fail 
( TFSF ) and tester - pass / simulation - fail ( TPSF ) patterns , 
instead of recording the total number of TPSF outputs over 
patterns that fail during simulation . 
[ 0062 ] The next step in Phase 2 is to classify a candidate 
as correct / incorrect using machine learning . For each defect 
type ( STUCK , CELL , BRIDGE or OPEN ) , a separate ML 
model is trained so that distinct characteristics relevant to 
each defect behavior can be learned . Training data is gen 
erated from diagnosing numerous virtual fail logs that are 
created by injecting and simulating multiple defects in the 
circuit . Hyperparameters of each model are optimized using 
a separate validation dataset . Each trained model inherently 
acts like a scoring framework and assigns a probability ( or 
a “ score ” ) to each detect candidate . Any candidate having a 
score exceeding the decision threshold is deemed a correct 
candidate . 
[ 0063 ] In one embodiment , the supervised machine learn 
ing model is a random forest , Features are extracted at 116 
from the test data by comparing the test patterns and outputs 
observed on the tester and predicted by the simulation at 
118. In one embodiment , 44 features are extracted . The 
features are derived from the stuck - at and the x fault 
simulation of a defect candidate , and , likely , completely 
represents its behavior . The features used in this embodi 
ment of the invention are shown in Table 3. Twenty - two 
features are extracted for each type of simulation ( stuck - at 
and X - fault ) , resulting in a total of 44 features . All 44 
features are used to train each fault - specific model . 
[ 0064 ] Because only a single candidate can represent an 
actual defect , the training and the validation datasets are 
highly imbalanced . An optimum decision threshold for each 
trained model is thus selected . In one embodiment , the 
selection is made using a Precision - Recall curve . Each 
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defect candidate ( according to its defect type ) is then 
adjudged correct / incorrect by the corresponding trained ML 
model . 

TABLE 3 

Features Extracted by Machine Learning Models 

No. Feature 

1 Number of TFSF patterns / Number of TF patterns 
2 Number of TFSF patterns / Number of SF patterns 
3 Number of TPSF patterns / Number of TP patterns 
4 Number of TPSF patterns / Number of SF patterns 
5 Number of TFSP patterns / Number of TF patterns 
6 Number of TFSP patterns / Number of SP patterns 
7 Number of TFSF outputs for TFSF patterns / Number of TF outputs 
8 Number of TFSF outputs for TFSF patterns / Number of SF outputs 
9 Number of TPSF outputs for TFSF patterns / Number of TP outputs 

10 Number of TPSF outputs for TFSF patterns / Number of SF outputs 
11 Number of TFSP outputs for TFSF patterns / Number of TF outputs 
12 Number of TFSP outputs for TFSF patterns / Number of SP outputs 
13 Number of TPSP outputs for TFSF patterns / Number of TP outputs 
14 Number of TPSP outputs for TFSF patterns / Number of SP outputs 
15 Number of TPSF outputs for TPSF patterns / Number of TP outputs 
16 Number of TPSF outputs for TPSF patterns / Number of SF outputs 
17 Number of TPSP outputs for TPSF patterns / Number of TP outputs 
18 Number of TPSP outputs for TPSF patterns / Number of SP outputs 
19 Number of TFSP outputs for TFSP patterns / Number of TF outputs 
20 Number of TFSP outputs for TFSP patterns / Number of SP outputs 
21 Number of TPSP outputs for TFSP patterns / Number of TP outputs 
22 Number of TPSP outputs for TFSP patterns / Number of SP outputs 

TF : tester - fail ; TP : tester - pass ; SF : simulation - fail ; SP : simulation - pass 
TFSF : tester - fail / simulation - fail ; TPSF : tester - pass / simulation - fail 
TFSP : tester - fail / simulation - pass ; TPSP : tester - pass / simulation - pass 

[ 0065 ] Finally , a cover of defect candidates is said to 
represent actual defects when each defect candidate in the 
cover is deemed correct in either Phase 1 or Phase 2 . 
[ 0066 ] FIG . 7 shows when Phase 2 is sufficient to diagnose 
and classify a defect . When only a single defect is present or , 
when multiple defects are present , if the defects do not 
interact with each other , and the defect behavior does not 
match with the common fault model , then X fault simulation 
and machine learning is used to correctly classify the defect . 
FIG . 9 shows the use of the ML models in Phase 2 to predict 
the proper classification of the defect . The trained models 
classify a candidate as correct or incorrect based on whether 
its prediction probability is greater than the decision thresh 
old ( or not ) . 
[ 0067 ] Phase 3 
[ 0068 ] If there is at least one type - 3 pattern , it implies that 
the chip under diagnosis is affected by multiple defects with 
overlapping error propagation paths for at least one failing 
pattern . 
[ 0069 ] In Phase 3 , ML classification is applied at two 
different levels . First , at a defect level , where fault - type 
specific ML models built using the approach outlined in 
Phase 2 using feature extraction at 116 to classify each 
defect candidate as correct / incorrect , and , second , at a cover 
level 120 , where the entire cover is predicted as correct / 
incorrect . 
[ 0070 ] However , there are a few differences when defect 
level classification is applied in Phase 3. First , a candidate 
cover is only simulated for type - 1 and type - 2 patterns up to 
this point , and not type - 3 and passing patterns . In one 
embodiment , 32 features that correspond to the failing 
patterns are used to train a defect - level ML model , although 
the ML model could be trained with any number of features . 
In this embodiment , the 32 features correspond to the failing 

patterns ( i.e. , rows 1-2 , 5-6 , 7-14 , 19-22 in Table 3 ) are used 
to train multiple fault - type - specific , defect - level ML models . 
[ 0071 ] Second , to be conservative and avoid eliminating a 
correct candidate cover , a cover is analyzed further if at least 
one of its component defect candidates is predicted correct 
by the ML model . Each cover is then simulated for the 
remaining patterns ( type - 3 and passing patterns ) . Here , 
machine learning is utilized at a candidate cover level . A 
single model ( preferably a random forest ) is trained using 
the steps similar to that described in Phase 2 , with the 
difference being that each training / validation instance is a 
candidate cover in Phase 3. In pone embodiment , all 44 
features listed in Table 3 may be used to train the cover - level 
model . A cover is then said to represent actual defects when 
it is predicted correct by the ML model . 
[ 0072 ] It should be noted that multiple - fault simulation is 
performed here to extract features , and not to explore the 
exponential search space . Unlike prior art methods , type - 3 
patterns are used here to further improve the quality of 
diagnosis . The method can effectively handle multiple byz 
antine defects without exhaustive enumeration of all fault 
combinations at a possible open defect location . 
[ 0073 ] FIG . 8 shows when Phase 3 is necessary to diag 
nose and classify the defect . When multiple defects are 
present , if the defects interact with each other , and the direct 
defect behavior does not match with common fault modes , 
then X fault simulation machine learning is used to correctly 
classify the defect . 
[ 0074 ] FIG . 10 shows the training of the four machine 
learning models . Numerous virtual fail logs are created by 
injecting a variety of fault behaviors . The training models 
are learned separately for each fault type . In one embodi 
ment , a random forest is used as a learning model due to its 
proven robust performance . A random forest is simply an 
ensemble of decision trees , where each tree is trained with 
a subset of the training data . The decision or the classifica 
tion threshold are also learned instead of using the more 
commonly used threshold of 0.5 for optimized performance . 
[ 0075 ] Experiments 
[ 0076 ] Two experiments were used to validate the method . 
One is a fault injection and simulation experiment using 
three different designs , and a second uses actual silicon 
failure data . 
[ 0077 ] Simulation 
[ 0078 ] A simulation - based experiment was performed 
using three designs one is an Advanced Encryption Stan 
dard ( AES ) core that provides AES - 128 encryption , the 
second design is the L2B cache write - back buffer ( called 
L2B ) of the OpenSPARC T2 processor , and the third design 
is an ITC'99 benchmark called B18 . Realistic physical 
defect behaviors associated with bridge , open and cell 
defects ( including byzantine bridges and opens ) are mod 
eled . For each design and defect multiplicity , 1,000 virtual 
fail logs were generated by uniquely and randomly selecting 
the defect locations and their behaviors . For each design , an 
additional 500 fail logs were used to produce the training 
dataset and another 500 to produce the validation dataset , 
while ensuring that each multiple fault injected is different . 
[ 0079 ] Each fail log was diagnosed using the method 
disclosed herein as the invention and two state - of - the - art 
commercial diagnosis tools . The diagnosis quality was 
assessed using three metrics , namely , diagnosability , reso 
lution and perfect diagnosis . Diagnosability is defined as the 
ratio of the number of defect locations that are correctly 
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identified to the number of defect locations injected . Reso 
lution is defined as the ratio of the number of defect 
locations that are correctly identified to the number of defect 
locations reported . An ideal diagnosis occurs when diagnos 
ability and resolution are simultaneously equal to one . 
[ 0080 ] FIG . 11 ( a ) compares the average diagnosability 
( y - axis ) achieved by the present invention with commercial 
diagnosis for the AES core for various defect multiplicities 
( x - axis ) . FIG . 11 ( a ) clearly shows that the method of the 
present invention performs better than commercial diagno 
sis . FIG . 11 ( a ) reveals that the average diagnosability using 
the method is 0.77 , which is 18.4 % ( 1.1x ) more than Tool 1 
( Tool 2 ) . When a circuit is affected by five or more defects , 
the method performs even better , where the enhancement 
over Tool 1 ( Tool 2 ) is 23.5 % ( 1.4x ) . Further analysis 
indicates that the method correctly identifies all the injected 
defect locations ( i.e. , diagnosability = 1 ) for 52.9 % fail logs , 
which is 22.2 % ( 2.5x ) higher than Tool 1 ( Tool 2 ) . 
[ 0081 ] FIG . 11 ( b ) compares the average resolution 
( y - axis ) attained by the method with commercial diagnosis 
for various defect multiplicities ( x - axis ) . FIG . 11 ( b ) shows 
that the average resolution of the method is 0.67 , which is 
97.0 % ( 1.2x ) more than Tool 1 ( Tool 2 ) . The method 
performs even better when a circuit is affected by five or 
more defects , wherein the resolution of the method is 2.3x 
( 2.4x ) times Tool 1 ( Tool 2 ) . Further analysis reveals that the 
method achieves ideal resolution for 3x as many fail logs as 
commercial diagnosis . 
[ 0082 ] FIG . 11 ( c ) shows that the method delivers an ideal 
diagnosis for 26.1 % fail logs , which is 2.9x ( 4x ) times Tool 
1 ( Tool 2 ) . For defect multiplicity more than 5 , where 
commercial diagnosis clearly does not return an ideal diag 
nosis , the method produces an ideal diagnosis for 4.3 % fail 
logs . 
[ 0083 ] FIG . 12 reveals that defect multiplicity 
increases , the likelihood of misprediction increases . For 
example , the method correctly estimates the number of 
defects for 65.2 % of fail logs when the actual defect 
multiplicity is two , compared to 47.5 % ( 53.5 % ) by Tool 1 
( Tool 2 ) ; when the number of injected defects is 10 , the 
method correctly predicts for 9.0 % of fail logs , compared to 
7.9 % ( 1.3 % ) by Tool 1 ( Tool 2 ) . On average , the method 
correctly determines the defect multiplicity for 36.7 % fail 
logs , which is 37.5 % ( 20.8 % ) more than Tool 1 ( Tool 2 ) . 
[ 0084 ] When the runtime ( wall clock time or elapsed real 
time , to be precise ) of the method is compared with com 
mercial diagnosis , it was observed that , on average , the 
method is 25.2 % slower than Tool 1 and 59.7 % faster than 
Tool 2. This comparison , however , does not include the 
one - time cost ( per design ) of creating the machine learning 
models for Phases 2 and 3. For instance , for the largest 
design , AES , it took 5.7 hours to train the models . However , 
the primary goal is to show the effectiveness ( in terms of the 
diagnostic metrics ) rather than the runtime efficiency of the 
method . 
[ 0085 ] Silicon 
[ 0086 ] The method was also applied to actual failing chips 
to evaluate its performance . The silicon failure data comes 
from a 40M gate test chip design manufactured in 14 nm 
technology . For each fail log , it is seen that the method ( and 
commercial diagnosis ) correctly localizes the defects that 
are PFAed . More importantly , the method returns fewer 
candidates than commercial diagnosis , on average , without 
sacrificing accuracy . 

[ 0087 ] FIG . 13 compares the number of defect candidates 
( y - axis ) returned by the method and commercial diagnosis 
for each fail log ( x - axis ) for which the PFA results are 
available . FIG . 13 reveals that the method returned fewer 
defect candidates than commercial diagnosis for 25 ( 69.4 % ) 
fail logs , while returning the same candidates for other fail 
logs , without losing accuracy . On average , 5.3 fewer can 
didates per fail log were returned , with maximum improve 
ment being 88.2 % . Furthermore , for the 17 fail logs diag 
nosed with multiple defects , the improvement is more 
profound . Specifically , 8.5 fewer candidates per fail log are 
returned , on average . To summarize , the method is shown to 
be effective in a simulation - based and a silicon experiment , 
with significant enhancement over state - of - the - art commer 
cial diagnosis . 
[ 0088 ] A single - chip diagnosis methodology to effectively 
diagnose multiple defects in integrated circuits has been 
described herein . It is a physically - aware , three - phase diag 
nosis methodology . Phases 1 and 2 focus on diagnosing a 
chip affected by a single defect or multiple defects that do 
not interact with each other . Phase 1 centers on finding a 
defect that echoes the behavior of classic fault models via a 
set of deterministic rules , while Phase 2 concentrates on 
identifying a defect through machine learning . A scoring 
model ( separate for each defect type ) that learns the hidden 
correlations between the tester response and the correct 
candidate is created to pinpoint the correct candidate . 
[ 0089 ] Phase 3 diagnoses a chip affected with multiple 
interacting defects . Similar to Phase 2 , Phase 3 applies 
machine learning at a defect candidate level using failing 
patterns that can be explained by multiple , non - interacting 
defect candidates . Then , Phase 3 employs machine learning 
at a candidate cover level using the passing and the remain 
ing failing patterns to identify the cover of defect candidates 
that corresponds to actual defects . 
[ 0090 ] Software diagnosis , which is the first step in failure 
analysis , is the backbone of yield learning and monitoring . 
High diagnosis quality can effectively guide and accelerate 
PFA , likely facilitating yield ramp . 
We claim : 
1. A method comprising : 
identifying one or more defects in a circuit ; 
determining whether the one or more identified defects 

are interacting ; 
wherein , if the one or more identified defects are non 

interacting : 
determining if the one or more identified defects con 

form to one or more known fault models ; 
if the identified defects do confirm to a known fault 
model , determining the fault type of the identified 
defect as the fault type of the conforming known 
model . 

2. The method of claim 1 , wherein identifying one or 
more defects in a circuit further comprises : 

applying one or more patterns to the circuit ; and 
identifying one or more failing patterns that cause failing 

outputs from the circuit . 
3. The method of claim 2 further comprising : 
tracing failing outputs of the circuit to one or more 

potential defect locations in the circuit . 
4. The method of claim 3 , further comprising , for each 

failing pattern : 

as 
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simulating an X - fault at each potential defect location 
until one or more defect locations are identified that 
explains the failing pattern . 

5. The method of claim 4 further comprising : 
mapping faults to one or more defect candidates within 

the circuit . 
6. The method of claim 1 , wherein identifying the fault 

types of the identified defects comprises : 
applying a set of rules to determine a defect candidate 

representative of the identified defect . 
7. The method of claim 2 , further comprising : 
determining a group of locations in the circuit that col 

lectively explains the one or more failing patterns , the 
group of locations comprising a cover of defect candi 
dates . 

8. The method of claim 7 wherein the error propagation 
path of each location in the group are disjoint from each 
other . 

9. The method of claim 7 , further comprising : 
determining that the identified defects do not conform to 

a known fault model ; and 
for each defect candidate , using one or more of a first type 

of machine learning models to classify the fault type 
and location of the defect candidate as correct or 
incorrect . 

10. The method of claim 9 wherein a separate machine 
learning model is used for each distinct fault type . 

11. The method of claim 10 wherein the one or more first 
type of machine learning models are trained using data sets 
comprising fail logs from a simulation of single and / or 
multiple defects in the circuit . 

12. The method of claim 11 wherein the data sets contain 
only non - interacting defects . 

13. The method of claim 9 wherein the one or more 
identified defects are interacting , comprising : 

applying one or more of a second type of machine 
learning models to classify the fault type and location 
of the defect candidate as correct or incorrect . 

14. The method of claim 13 wherein the one or more 
second type of machine learning models are trained using 
data sets containing interacting defects . 

15. The method of claim 13 wherein the one or more 
identified defects are interacting when two or more of the 
defects have overlapping error propagation paths for at least 
one failing pattern . 

16. The method of claim 13 further comprising 
performing simulations using multiple - fault patterns to 

extract features recognized by the one or more second 
type of machine learning models . 

17. The method of claim 13 further comprising : 
determining if at least one defect candidate in a cover is 

determined to be correct by the one or more second 
type of machine learning models ; and 

applying a cover - level machine learning model to deter 
mine if the cover is determined to be representative of 
actual defects . 

* 


