A Deterministic-Statistical Multiple-Defect
Diagnosis Methodology

Soumya Mittal and R. D. (Shawn) Blanton
Advanced Chip Test Laboratory
Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

Abstract—Software diagnosis is the process of locating and
characterizing a defect in a failing chip. It is the cornerstone
of failure analysis that consequently enables yield learning and
monitoring. However, multiple-defect diagnosis is challenging
due to error masking and unmasking effects, and exponential
complexity of the solution search process. This paper describes a
three-phase, physically-aware diagnosis methodology called MD-
LearnX to effectively diagnose multiple defects, and in turn, aid
in accelerating the design and process development. The first
phase identifies a defect that resembles traditional fault models.
The second and the third phases utilize the X -fault model and
machine learning to identify correct candidates. Results from a
thorough fault injection and simulation experiment demonstrate
that MD-LearnX returns an ideal diagnosis 2X more often
than commercial diagnosis. Its effectiveness is further evidenced
through a silicon experiment, where, on average, MD-LearnX
returns 5.3 fewer candidates per diagnosis as compared to state-
of-the-art commercial diagnosis without losing accuracy.

I. INTRODUCTION

As semiconductor fabrication advances to smaller process
nodes, it is becoming increasingly difficult to ramp yield
quickly. Advanced nodes introduce new design and manufac-
turing challenges, resulting in an increase in the number and
complexity of defect mechanisms, which consequently hinder
yield learning. The rate of yield learning dictates the success
of a new fabrication process, design, etc., and thus must be
accelerated to meet diminishing time-to-market and time-to-
volume requirements.

Software-based defect diagnosis plays an important role
in failure analysis. Diagnosis is a process to identify the
location and ideally, characterize the nature and root cause
of a defective chip by examining its tester response. Based on
the feedback produced by diagnosis, a small but significant
number of chips are selected to be inspected physically.
The aim of physical failure analysis (PFA) is to provide
crucial understanding of failure mechanisms to improve the
design and/or the manufacturing process for increasing yield.
Diagnosis is therefore an indispensable tool for facilitating
yield learning.

Diagnosis methods in the literature can essentially be dif-
ferentiated based on the type of the fault model used (the
(temporary) stuck-at fault model [1]-[10] vs. the X-fault
model [11]-[15]), the scoring technique employed (determin-
istic [3]-[16] vs. statistical [17]), how precisely a defect is
localized (i.e., whether a defect candidate is reported at a
logic, back-end layout [18] or front-end layout level [19]),

and whether multiple defects affecting a single chip can be
analyzed/identified. [4]-[12].

With decreasing feature sizes, and increasing interconnect
density and manufacturing complexity, more chips are failing
due to multiple defects, particularly when systematic defects
(that arise from unforeseeable process-design interactions) are
the dominant yield limiters (either in the early stages of yield
learning or due to yield excursion).

To demonstrate the importance of multiple-defect diagnosis,
silicon test data from tens of thousands of failing chips man-
ufactured by various organizations in process nodes ranging
from 130nm to 14nm is collected and analyzed. The results
are summarized in Table 1.

However, characterizing each defect in a chip affected by
multiple defects is challenging, primarily due to two reasons.
First, erroneous values propagating from more than one defect
location can interact with each other, resulting in either error
masking (where one error blocks the propagation of another)
or error unmasking (where one error assists the propagation
of another). Second, the solution search space is exponential
in defect multiplicity (unknown beforehand), which makes
finding an optimum solution extremely difficult.

Numerous methods have been suggested over the years to
diagnose multiple defects. The first category of methods [6]-
[10] rely on identifying a defect via failing patterns (a) that
can be explained by a single location, and (b) where errors
propagating from multiple locations do not interfere with each
other. However, such patterns can be limited and/or find an
incorrect location due to a considerable number of interactions

TABLE 1
SUMMARY OF SILICON TEST DATA FROM CHIPS MANUFACTURED ACROSS
VARIOUS PROCESS NODES AND ORGANIZATIONS HIGHLIGHTING THE
PERCENTAGE OF FAILING CHIPS AFFECTED BY MULTIPLE DEFECTS.

Failing chips

Process diagnosed with No. of failing
Chip type node (nm) | multiple defects (%) chips
Test chip 110 7.7 5416
High-volume chip 55 11.7 1201
Test chip 14 15.6 1375
Test chip 28 29.8 1952
Test chip 14 322 11727
High-volume chip 130 32.6 328
High-volume chip 90 353 11196
High-volume chip [8] 130 41.0 453
High-volume chip - 49.8 353
Test chip 28 53.9 167
[6] 55 60.0 209

among errors manifesting from multiple defect locations. The
second category of methods [1], [2] focus on finding each de-
fect incrementally but involve a significant number of multiple-
fault simulations, and hence do not scale well with design size
and defect multiplicity. The third category of methods (e.g.,
[20]), that guide their effort in exploring the exponential search
space via optimization techniques, face a similar drawback and
are thus impractical. The fourth category of methods [4], [11]
avoid explicit fault simulation to identify multiple defects. For
each failing pattern, each candidate location in a design is
scored based on its ability to propagate an error to a design
output while considering error masking and unmasking. Each
method then, iteratively and greedily, selects the most likely
set of defect locations based on a candidate ranking procedure.

Another way to avoid the inherent problem of error masking
and unmasking in multiple-defect diagnosis is to employ the
X-fault model [12]-[15]. The X-fault model assumes an
unknown (X)) value at a potential defect location and allows
error to propagate conservatively.

Furthermore, prior work discussed up to this point uses
various candidate-ranking heuristics to identify the best set
of defect locations that can represent actual defects. However,
such heuristics are explicitly created based on intuition and
domain knowledge, and are thus not guaranteed to work for
every defect mechanism, design and/or process node.

On the contrary, a candidate scoring procedure implicitly
derived from test fail data can uncover the hidden correlations
between a correct candidate and the observed circuit response,
which otherwise could have been overlooked by manually
constructed scoring models [17]. Thus, an alternative to rank
candidates is machine learning.

Machine learning (ML) has been successfully applied in
chip testing [21]. Specifically, in the area of diagnosis, ML has
been used to optimize test data collection to make diagnosis
more efficient [22], [23], improve the accuracy and resolution
of diagnosis itself [17], and pinpoint yield-limiting layout
geometries by analyzing a volume of diagnosis data [24], [25].

Recent work introduced a diagnosis methodology called
LearnX [17] that employs the X-fault model to avoid elim-
inating an actual defect location, and machine learning to
identify the best candidate that could represent a defect.
LearnX achieves superior performance for single-defect diag-
nosis when compared with a state-of-the-art commercial tool;
it returns a single correct candidate for 86.6% more fail logs.

This work describes a single-chip diagnosis methodology
that we term MD-LearnX. It builds on LearnX to effectively
tackle the task of characterizing more than one defect and
addresses the drawbacks of prior work related to multiple-
defect diagnosis discussed up to this point. Notable features
of MD-LearnX include:

1. In addition to using a deterministic fault model (where the
erroneous value is either logic-0 or logic-1), the X -fault model
is employed as well to prevent the elimination of a correct
candidate. X -values stemming from more than one location
in a design cannot obstruct the propagation of another error,

thus circumventing one of the main drawbacks of multiple-
defect diagnosis (that of error masking and unmasking).

2. As opposed to manually developing a complex candidate-
scoring heuristic to identify the best candidate, it utilizes
machine learning to create a scoring model that learns the
latent correlations between a correct candidate and the tester
response.

3. It uses design layout information to identify the phys-
ical defect type and behavior of each candidate. Back-end
and front-end layout analysis techniques [18], [19] further
strengthen MD-LearnX by improving its physical resolution.

It should be noted that an approach that improves the quality
of diagnosis by either reordering, selecting or adding test
patterns complement MD-LearnX [26], [27].

The rest of the paper is organized as follows. Section 2
provides a detailed overview of MD-LearnX. Section 3 de-
scribes several experiments that demonstrate the effectiveness
of MD-LearnX. The final section concludes this paper.

II. DIAGNOSIS METHODOLOGY

Fig. 1 shows the overview of MD-LearnX. It is a three-
phase diagnosis methodology. The sequence of analysis steps
involved in each phase are marked with a different color. The
first few steps common in each phase are discussed in Section
II-A. The first phase (Section II-B) focuses on finding defects
that mirror the behavior of well-established fault models. Such
defects are henceforth referred to as class-1 defects. Phase
2 (Section II-C) aims to identify a defect whose behavior
deviates from that of each fault model considered in Phase
1 and whose error propagation path does not interfere with
errors stemming from other defect locations for each failing
pattern. Such defects are henceforth referred to as class-2
defects. Finally, any failing chip left undiagnosed is analyzed
in Phase 3 (Section II-D). Such a failing chip is affected by
multiple defects where errors manifesting from at least two
defects interact with each other such that no single candidate
can explain the observed response for at least one failing
pattern. Table 2 summarizes the class and multiplicity of
defects targeted by each phase of MD-LearnX.

A. Phase 1-3 steps

MD-LearnX begins with path tracing [28], where it traces
back from each failing output for each failing pattern to infer
potential defective lines. Path tracing guarantees that it will

TABLE 2
CLASS AND MULTIPLICITY OF DEFECTS TARGETED BY EACH PHASE OF
MD-LEARNX.
Class-1 Class-2
defects defects Error propagation paths MD-LearnX phase
>1 0 Phase 1
0 >1 Disjoint for each failing Phase 2
>1 >1 pattern Phase 1 and Phase 2
Overlapping for at least
>1 >1 one failing pattern Phase 3

1 2. Type-1 pattern
analysis

Candidate
fault type
classification

Candidate

Path

. cover
tracing

identification

Type-2 pattern
analysis

[

N 12 Passing pattern 1 A
simulation Rules \
Each failing £
pattern 1—‘
explained?
P . Feature Candidate 2 Correct
) extraction l predlctlon candidates
Type-3 and passing Feature l Candidate cover .
pattern simulation extraction prediction \)

Fig. 1.

find a defect location that assists in error propagation to at
least one design output, even for multiple defects.

For each failing pattern, an X fault is simulated at each
candidate location (one at a time) to identify faults that can
explain! that pattern. Each such explained pattern is classified
as a type-1 pattern. It should be noted that a type-1 pattern is
defined with respect to a (temporary) stuck-at fault, not an X
fault, in the literature [7], [8]. However, as discussed in Section
I, the X-fault model is not susceptible to error masking, and
possibly averts the elimination of a candidate that represents
an actual defect.

Each failing pattern is further analyzed to find a group
of locations such that (a) their error propagation paths are
disjoint, and (b) they can collectively explain that failing
pattern. Each such pattern is classified as a type-2 pattern. This
procedure is performed with respect to both stuck-at and X
fault simulation. (A failing pattern is analyzed multiple times
so that the final cover consisting of defect candidates resulting
from the next couple of steps is optimal.) The remaining failing
patterns, if any, are classified as type-3 patterns.

Next, physical defect locations associated with logical can-
didates that explain a type-1 or type-2 pattern are extracted
from the design layout by examining their topology and the
physical neighborhood. Each logical candidate is then mapped
to a physical defect candidate while keeping track of the set of
failing patterns it explains. For example, if a logical candidate
a explains pattern ¢, candidate b explains pattern o, and a and
b form a physical bridge pair, then the defect candidate (a, b)
explains both the patterns ¢; and to. Possible candidate defect
types considered in this work are STUCK, CELL, BRIDGE and
OPEN.

The next step is to determine covers consisting of defect
candidates via the set-cover approach such that (a) the size
of a cover is minimum, i.e., a cover consists of a minimum
number of defect candidates, and (b) defect candidates in a
cover collectively explain each failing pattern that is either
type-1 or type-2.

If each failing pattern is classified as either type-1 or type-
2, that is, there are no type-3 patterns, it implies that the
chip under diagnosis is affected by defects with disjoint error
propagation paths for each failing pattern. The design (and the
tester response) can essentially be partitioned such that each
individual defect is diagnosed independently either in Phase 1
or Phase 2, as discussed in Sections II-B and II-C, respectively.

'An X fault ‘explains’ a failing pattern when the set of simulated outputs
that possess an X value subsume the erroneous circuit outputs.

Overview of the proposed three-phase diagnosis methodology, MD-LearnX. The sequence of steps in each phase are marked with a different color.

B. Phase 1

As alluded to earlier, Phase 1 focuses on diagnosing de-
fects that mimic the behavior of traditional fault models.
Specifically, a set of strict rules (Table 3) are constructed for
each candidate defect type to identify the correct cover of
candidates. A defect candidate of a cover is deemed correct
if it satisfies the rules (and hence represents a class-1 defect).
Defect candidates of a cover that do not comply with the rules
are further analyzed in Phase 2, which is especially geared
towards the diagnosis of class-2 defects. It should be noted
that the covers with the least number of class-2 defects are
passed on to Phase 2 (by virtue of Occam’s Razor).

C. Phase 2

A defect candidate, at this point of diagnosis, has the
following properties; (a) it portrays behavior that cannot be
modeled by the fault models employed in Phase 1, and (b)
an error disseminating from the candidate location does not
block or assist in error propagation of other possible defects
in the circuit for any failing pattern. The primary objective of
Phase 2 is to apply machine learning to discern the correct
candidate.

Specifically, a commonly used supervised machine learning
algorithm called a random forest [29] is used to classify a
candidate as correct/incorrect. Forty-four features are extracted
from the test data by comparing the test patterns and outputs
observed on the tester and predicted by simulation [17]. The
features are derived from the stuck-at and the X fault simu-
lation of a defect candidate, and likely, completely, represents
its behavior.

For each defect type (STUCK, CELL, BRIDGE and OPEN),
a separate model is trained so that distinct characteristics
relevant to each defect behavior can be learned. Training data
is generated from diagnosing numerous virtual fail logs that
are created by injecting and simulating multiple defects in the

TABLE 3
RULES FOR EACH CANDIDATE DEFECT TYPE IN PHASE 1.

Defect type Rule

STUCK ‘ Candidate passes for each passing pattern.
OPEN ‘ Candidate passes for each passing pattern.
CELL \ Cell passes consistency check [3].
Bridged nets have opposite polarities for failing patterns.
Bridged nets have the same polarity for passing patterns
BRIDGE that sensitize one of the nets to a design output.

Common rule: Candidate explains each failing pattern.

circuit. Hyperparameters of each model are optimized using a
separate validation dataset.

Because only a single candidate can represent an actual
defect, the training and the validation datasets are highly
imbalanced. An optimum decision threshold for each trained
model is thus selected using the Precision-Recall curve [17],
[30]. Each defect candidate (according to its defect type) is
then adjudged correct/incorrect by the corresponding trained
ML model.

Finally, a cover of defect candidates is said to represent
actual defects when each defect candidate in the cover is
deemed correct by either Phase 1 or Phase 2.

D. Phase 3

If there is at least one type-3 pattern, it implies that the
chip under diagnosis is affected by multiple defects with
overlapping error propagation paths for at least one failing
pattern.

In Phase 3, ML classification is applied at two different
levels; first, at a defect level, where defect-type specific ML
models built using the approach outlined in Phase 2 classify
each defect candidate as correct/incorrect, and, second, at
a cover level, where the entire cover is predicted as cor-
rect/incorrect.

However, there are a few differences when defect-level
classification is applied in Phase 3. First, a candidate cover
is only simulated for type-1 and type-2 patterns up to this
point, and not type-3 and passing patterns. Thus, 32 features
that correspond to the failing patterns are used to train a
defect-level ML model. Second, in order to be conservative
and avoid eliminating a correct candidate cover, a cover
is analyzed further if at least one of its component defect
candidates is predicted correct by the ML model. Each cover is
then simulated for the remaining patterns (type-3 and passing
patterns). Here, machine learning is utilized at a candidate
cover level. A single random forest is trained using the steps
similar to that described in Phase 2, with the difference being
that each training/validation instance is a candidate cover in
Phase 3. A cover is then said to represent actual defects when
it is predicted correct by the ML model.

It should be noted that unlike [1], [2], multiple-fault simula-
tion is performed here to extract features, and not explore the
exponential search space. Unlike the work of [5]-[10], type-3
patterns are used here to further improve the quality of diag-
nosis. Unlike [5], MD-LearnX can effectively handle multiple
byzantine defects [31] without exhaustive enumeration of all
fault combinations at a possible open defect location.

III. EXPERIMENT

Two experiments are described to validate MD-LearnX:
one is a fault injection and simulation experiment using three
different designs (Section III-A), and another that uses silicon
failure data (Section III-B).

A. Simulation

A simulation-based experiment is performed using three
designs — one is an Advanced Encryption Standard (AES) core
that provides AES-128 encryption, the second design is the
L2B cache write-back buffer (called L2B) of the OpenSPARC
T2 processor [32], and the third design is an ITC'99 benchmark
called B18. Realistic physical defect behaviors associated with
bridge, open and cell defects (including byzantine bridges [33]
and opens [31]) are modeled here [17]. For each design and
defect multiplicity, 1,000 virtual fail logs are generated by
uniquely and randomly selecting the defect locations and their
behaviors. For each design, additional 500 fail logs are used
to produce the training dataset and another 500 to produce
the validation dataset, while ensuring that each multiple fault
injected is different.

Each fail log is diagnosed using MD-LearnX and two state-
of-the-art commercial diagnosis tools. The diagnosis quality is
assessed using three metrics, namely, diagnosability, resolution
and home run. Diagnosability is defined as the ratio of the
number of defect locations that are correctly identified to
the number of defect locations injected [11]. Resolution is
defined as the ratio of the number of defect locations that
are correctly identified to the number of defect locations
reported. A diagnosis approach is said to hit a home run when
diagnosability and resolution are simultaneously equal to one
(i.e., perfect diagnosis).

Fig. 2(a) compares the average diagnosability (y-axis)
achieved by MD-LearnX with commercial diagnosis for the
AES core for various defect multiplicities (x-axis). Fig. 2(a)
clearly shows that MD-LearnX performs better than commer-
cial diagnosis. Fig. 2(a) reveals that the average diagnosability
of MD-LearnX is 0.77, which is 18.4% (1.1X) more than Tool
1 (Tool 2). When a circuit is affected by five or more defects,
MD-LearnX performs even better, where the enhancement
over Tool 1 (Tool 2) is 23.5% (1.4X). Further analysis indicates
that MD-LearnX correctly identifies all the injected defect
locations (i.e., diagnosability = 1) for 52.9% fail logs, which
is 22.2% (2.5X) higher than Tool 1 (Tool 2).

Fig. 2(b) compares the average resolution (y-axis) attained
by MD-LearnX with commercial diagnosis for various defect
multiplicities (z-axis). Fig. 2(b) shows that the average res-
olution of MD-LearnX is 0.67, which is 97.0% (1.2X) more
than Tool 1 (Tool 2). It performs even better when a circuit
is affected by five or more defects; its resolution is 2.3X
(2.4X) times Tool 1 (Tool 2). Further analysis reveals that MD-
LearnX achieves ideal resolution for 3X as many fail logs as
commercial diagnosis.

It is observed from Fig. 2(c) that MD-LearnX delivers a
home run for 26.1% fail logs, which is 2.9X (4X) times Tool
1 (Tool 2). For defect multiplicity more than 5, where com-
mercial diagnosis nearly does not return an ideal diagnosis,
MD-LearnX hits a home run for 4.3% fail logs.

The improvement in the quality of diagnosis achieved by
MD-LearnX over commercial diagnosis for the three designs
examined is summarized in Table 4. On average, the diagnos-

(a)

=
o
S

(b) (c)

MD-LearnX
20.75- %] | Tool 1
= \ c c
5 N\ =] E -4~ Tool 2
] RN 5 & |
é 0.50 e SN qE) &
(= +\“|'-——+-_ 3 N o \\\
£0.25- T o« oo |] N
o \
0.00- ‘ R
1 2 3 4 5 6 8 10 1 2 3 4 5 6 8 10 1 2 3 4 5 6 8 10

Defect multiplicity

Fig. 2. (a) Diagnosability, (b) resolution and (c) home run of MD-LearnX compared with commercial diagnosis for the AES core.

TABLE 4
DIAGNOSIS QUALITY IMPROVEMENT OVER COMMERCIAL DIAGNOSIS FOR
DIFFERENT DESIGNS.

\ Diagnosability (%) Resolution (%) Home run (%)

Design

| Tool 1 Tool 2 | Tool 1 Tool 2 | Tool 1 Tool 2
AES 18.5 108.1 97.1 123.3 188.9 271.4
L2B 26.0 173.9 44.2 341.2 75.0 966.7
B18 32.0 127.6 59.0 129.6 340.0 633.3
Average | 25.5 136.5 | 66.8 198.0 | 201.3 623.8

ability of MD-LearnX is 25.5% (1.4X) more than Tool 1 (Tool
2), and the resolution is 66.8% (2X) higher than Tool 1 (Tool
2). Additionally, the number of home runs hit by MD-LearnX
is three (seven) times Tool 1 (Tool 2), on average.

Furthermore, MD-LearnX is evaluated based on its ability
to estimate the defect multiplicity. Fig. 3 shows the box-plot
distribution of the number of defects estimated (y-axis) by
MD-LearnX and commercial diagnosis for each injected defect
multiplicity (z-axis).

Fig. 3 expectedly reveals that as defect multiplicity in-
creases, the likelihood of misprediction increases. For exam-
ple, MD-LearnX correctly estimates the number of defects
for 65.2% of fail logs when the actual defect multiplicity is
two, compared to 47.5% (53.5%) by Tool 1 (Tool 2); when
the number of injected defects is 10, MD-LearnX correctly
predicts for 9.0% of fail logs, compared to 7.9% (1.3%) by
Tool 1 (Tool 2). On average, MD-LearnX correctly determines
the defect multiplicity for 36.7% fail logs, which is 37.5%
(20.8%) more than Tool 1 (Tool 2).

When the runtime (wall clock time or elapsed real time,
to be precise) of MD-LearnX is compared with commercial
diagnosis, it is observed that, on average, MD-LearnX is

214- EE MD-LearnX
S =3 Tool 1
2127 mmm Tool 2
g10-
S 6
g
g 4
£, L
(%]
w

O,

1 2 3 4 5 6 8 10

Injected defect multiplicity

Fig. 3. Distribution of defect multiplicity estimated by MD-LearnX and
commercial diagnosis for the AES core.

MD-LearnX
Commercial diagnosis

N
o

Single defect Multiple defects
-

w
o

N
o

No. of defect candidates

=
o

o

15 20
Fail log index

10 25 30 35

Fig. 4. Number of candidates returned by MD-LearnX for 36 silicon fail
logs.

25.2% slower than Tool 1 and 59.7% faster than Tool 2. This
comparison, however, does not include the one-time cost (per
design) of creating the machine learning models for phases 2
and 3. For instance, for the largest design, AES, it takes 5.7
hours to learn the models. However, the primary goal here is
to show the effectiveness (in terms of the diagnostic metrics)
rather than the runtime efficiency of MD-LearnX.

B. Silicon

MD-LearnX is also applied to actual failing chips to eval-
uate its performance. The silicon failure data comes from a
40M gate test chip design manufactured in 14nm technology.
For each fail log, it is seen that MD-LearnX (and commercial
diagnosis) correctly localizes the defects that are PFAed. More
importantly, MD-LearnX returns fewer candidates than com-
mercial diagnosis, on average, without sacrificing accuracy.

Fig. 4 compares the number of defect candidates (y-axis)
returned by MD-LearnX and commercial diagnosis for each
fail log (2-axis) for which the PFA results are available®. Fig.
4 reveals that MD-LearnX returns fewer defect candidates
than commercial diagnosis for 25 (69.4%) fail logs, while
returning the same candidates for other fail logs, without
losing accuracy. On average, 5.3 fewer candidates per fail
log are returned, with maximum improvement being 88.2%.
Furthermore, for the 17 fail logs diagnosed with multiple
defects, the improvement is more profound. Specifically, 8.5
fewer candidates per fail log are returned, on average.

To summarize, MD-LearnX is shown to be effective in a
simulation-based and a silicon experiment, with significant
enhancement over state-of-the-art commercial diagnosis.

2The available silicon design and test data conforms to only one of the
commercial diagnosis tools (Tool 1).

IV. CONCLUSIONS

In this work, a single-chip diagnosis methodology called
MD-LearnX is described to effectively diagnose multiple
defects. It is a physically-aware, three-phase diagnosis method-
ology. Phase 1 and 2 focus on diagnosing a chip affected by a
single defect or multiple defects that do not interact with each
other. While Phase 1 centers on finding a defect that echoes
the behavior of classic fault models via a set of deterministic
rules, Phase 2 concentrates on identifying a defect through
machine learning. A scoring model (separate for each defect
type) that learns the hidden correlations between the tester
response and the correct candidate is created to pinpoint the
correct candidate.

Phase 3, on the other hand, is adept in diagnosing a chip
affected with multiple interacting defects. First, similar to
Phase 2, it applies machine learning at a defect candidate
level using failing patterns that can be explained by multiple,
non-interacting defect candidates. Then, it employs machine
learning at a candidate cover level using the passing and
the remaining failing patterns to identify the cover of defect
candidates that corresponds to actual defects.

A comprehensive simulation-based experiment is conducted
to assess MD-LearnX, where a total of 21,000 faulty circuits
with varying defect multiplicities and behaviors are created
and analyzed. The proposed methodology achieves an average
diagnosability and resolution of 0.69 and 0.68, respectively, an
improvement of 25.5% and 66.8% over commercial diagnosis.
In addition, MD-LearnX delivers a home run, i.e., returns an
ideal diagnosis, for 26.7% of the fail logs, which is twice as
many as the better-of-the-two commercial diagnosis tools.

The capability of MD-LearnX is further demonstrated with
a silicon experiment, where 36 fail logs whose PFA results
are available are diagnosed. It is seen that MD-LearnX returns
fewer candidates than commercial diagnosis for 69.4% of the
fail logs, without sacrificing accuracy.

Software diagnosis, which is the first step in failure analysis,
is the backbone of yield learning and monitoring. High diag-
nosis quality can effectively guide and accelerate PFA, likely
facilitating yield ramp. Future work focuses on extracting
design- and layout-specific features in Phase 2 and Phase 3
to further improve the performance of MD-LearnX.

REFERENCES

[1] Zhiyuan Wang, M. Marek-Sadowska, K. . Tsai, and J. Rajski, “Analysis
and Methodology for Multiple-fault Diagnosis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 3, pp. 558-575, March 2006.

[2] J. B. Liu and A. Veneris, “Incremental Fault Diagnosis,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 24, no. 2, pp. 240-251, Feb 2005.

[3] R. Desineni, O. Poku, and R. D. Blanton, “A Logic Diagnosis Method-
ology for Improved Localization and Extraction of Accurate Defect
Behavior,” in IEEE International Test Conference, Oct 2006.

[4] J. Ye et al., “Diagnose Failures Caused by Multiple Locations at a Time,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 22, no. 4, pp. 824-837, April 2014.

[5] P. Chen et al., “Physical-aware Diagnosis of Multiple Interconnect
Defects,” in International Test Conference in Asia (ITC-Asia), Sep. 2017.

[6] ——, “Physical-aware Systematic Multiple Defect Diagnosis,” IET
Computers Digital Techniques, vol. 8, no. 5, pp. 199-209, Sep. 2014.

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]
[29]
(30]
[31]

[32]

[33]

X. Tang, W. Cheng, R. Guo, and S. M. Reddy, “Diagnosis of Multi-
ple Physical Defects using Logic Fault Models,” in IEEE Asian Test
Symposium, Dec 2010.

T. Bartenstein, D. Heaberlin, L. Huisman, and D. Sliwinski, “Diagnosing
Combinational Logic Designs using the Single Location At-a-time
(SLAT) Paradigm,” in /EEE International Test Conference, Nov 2001.
S. Holst and H. J. Wunderlich, “Adaptive Debug and Diagnosis without
Fault Dictionaries,” in IEEE European Test Symposium, May 2007.

D. B. Lavo, I. Hartanto, and T. Larrabee, “Multiplets, Models, and
the Search for Meaning: Improving Per-test Fault Diagnosis,” in /EEE
International Test Conference, Oct 2002.

X. Yu and R. D. Blanton, “Diagnosis of Integrated Circuits With
Multiple Defects of Arbitrary Characteristics,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 6, pp. 977-987, June 2010.

V. Boppana et al., “Multiple Error Diagnosis based on Xlists,” in Design
Automation Conference, June 1999, pp. 660-665.

V. Boppana and M. Fujita, “Modeling the Unknown! Towards Model-
independent Fault and Error Diagnosis,” in IEEE International Test
Conference, Oct 1998, pp. 1094-1101.

X. Wen et al., “On Per-test Fault Diagnosis Using the X-fault model,” in
IEEE International Conference on Computer Aided Design, Nov 2004.
I. Polian et al., “Diagnosis of Realistic Defects Based on the X-fault
Model,” in IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems, April 2008.

I. Pomeranz, “OBO: An Output-by-output Scoring Algorithm for Fault
Diagnosis,” in IEEE Computer Society Annual Symposium on VLSI,
2014.

S. Mittal and R. D. Blanton, “LearnX: A Hybrid Deterministic-Statistical
Defect Diagnosis Methodology,” in IEEE European Test Symposium,
May 2019.

——, “PADLOC: Physically-aware Defect Localization and Character-
ization,” in IEEE Asian Test Symposium, Nov 2017.

——, “NOIDA: Noise-resistant Intra-cell Diagnosis,” in IEEE VLSI Test
Symposium, April 2018.

S. Kundu et al., “Framework for Multiple-Fault Diagnosis Based on
Multiple Fault Simulation Using Particle Swarm Optimization,” /EEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 3, pp. 696-700, March 2014.

H. Stratigopoulos, “Machine Learning Applications in IC Testing,” in
IEEE European Test Symposium (ETS), May 2018.

Q. Huang, C. Fang, S. Mittal, and R. D. Blanton, “Improving Diagnosis
Efficiency via Machine Learning,” in IEEE International Test Confer-
ence, Oct 2018.

C. Fang, Q. Huang, S. Mittal, and R. D. Blanton, “Diagnosis Outcome
Preview through Learning,” in IEEE VLSI Test Symposium, Apr 2019.
W. Cheng et al., “Automatic Identification of Yield Limiting Layout
Patterns Using Root Cause Deconvolution on Volume Scan Diagnosis
Data,” in IEEE Asian Test Symposium, Nov 2017.

R. D. Blanton ef al., “Yield Learning through Physically Aware Diagno-
sis of IC-failure Populations,” IEEE Design Test of Computers, vol. 29,
no. 1, pp. 3647, Feb 2012.

N. Wang et al., “Improving the Resolution of Multiple Defect Diagnosis
by Removing and Selecting Tests,” in I[EEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Oct
2018.

I. Pomeranz, “Test Scores for Improving the Accuracy of Logic Di-
agnosis for Multiple Defects,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 7, pp. 1720-1724, July 2019.
S. Venkataraman and W. K. Fuchs, “A Deductive Technique for Diagno-
sis of Bridging Faults,” in IEEE International Conference on Computer
Aided Design, Nov 1997, pp. 562-567.

L. Breiman, “Random Forests,” Machine Learning, pp. 5-32, Oct 2001.
I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, 2016.
S.-Y. Huang, “Diagnosis of Byzantine Open-segment Faults,” in /EEE
Asian Test Symposium, Nov 2002, pp. 248-253.

I. Parulkar er al., “OpenSPARC: An Open Platform for Hardware
Reliability Experimentation,” in Workshop on Silicon Errors in Logic-
System Effects, 2008.

P. C. Maxwell and R. C. Aitken, “Biased voting: A method for
simulating CMOS bridging faults in the presence of variable gate logic
thresholds,” in IEEE International Test Conference, Oct 1993.

