
Prior work that applies ML to diagnosis can be broadly
divided into two categories. The first category of work is
employed after diagnosis, that is, it uses the outcomes of
diagnosis tools to assist yield learning. For example, the
authors of [9] use a random forest to identify whether the
chip failing is due to a bridge defect. In [1-3], a support
vector machine model is learned from diagnostic results and
physical information to predict whether a candidate is more
likely to be the actual defect location. The authors of [4] aim to
discover the root cause of defects based on statistical learning
on diagnosis results. The second category uses ML before
diagnosis begins, and the goal is to preprocess test data in
order to assist diagnosis. For example, in [10], ML is used to
decide when to minimize fail data collection, while at the same
time ensuring a high-quality diagnosis outcome. On the other
hand, the work in [8] predicts various outcomes of diagnosis
before diagnosis process begins for prudent diagnosis resource
allocation. This work holds different assumptions as [10], that
is, it assumes the testing stage has ended and the available fail
data is fixed.

The proposed work in this paper has a similar context
and goal as [8], which is to preprocess fail logs in order to
select those chips that are most likely to produce meaningful
diagnosis results. That work of [8] examines specific aspects
of a diagnosis outcome, including whether a diagnosis run
will succeed in providing some valid results, whether a chip
fails due to a defective scan chain, and whether diagnosis
runtime will exceed some time threshold. This work focuses
on more informative aspects of a diagnosis. First, we focus
on predicting the existence of multiple defects in a failing
chip. During the yield ramp, the manufacturing process is not
mature, meaning multiple defects are quite likely. Failing ICs
with multiple defects may be an indicator of significant issues
in the fabrication process, implying that it is beneficial to
prioritize these failing ICs. Second, we focus on predicting
the number of candidates that diagnosis reports for each
defect, i.e., resolution. A very large resolution is not desirable
because it greatly reduces the likelihood of successful PFA.
To expand our understanding of the industrial landscape, we
have conducted a survey of various industry practitioners who
use diagnosis tools daily. Survey results indicated that most
practitioners will not perform PFA on a failing chip with
resolution larger than 3. Thus, performing diagnosis on failing
chips with a moderately high resolution is not a good use of
resources. We therefore would ideally not run diagnosis on any
fail log whose resolution is greater than some threshold (i.e.,
3). Third, we also predict the order of magnitude of diagnosis
runtime, instead of a simple classification of “too long” or
“short” as in [8], which is more informative and helpful for

!

Diagnosis Outcome Preview through Learning
Chenlei Fang, Qicheng Huang, Soumya Mittal and R. D. (Shawn) Blanton

Advanced Chip Testing Laboratory (www.ece.cmu.edu/∼actl/)
Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

{chenleif, qichengh, soumyami, rblanton}@andrew.cmu.edu

Abstract—Logic diagnosis is a software-based methodology 
to identify the behavior and location of defects in failing in-
tegrated circuits, which is an essential step in yield learning. 
However, diagnosis can be time-consuming and produce unuseful 
information for further investigation of yield loss. It would 
therefore be desirable to have a preview of diagnosis outcomes 
beforehand, which helps engineers allocate diagnosis resources in 
a more efficient way. In this work, random forest classification 
and regression techniques are used to predict three aspects 
of potential diagnosis outcomes: existence of multiple defects, 
diagnosis resolution, and runtime magnitude. Experiments on 
a 28nm test chip and a 90nm high-volume manufactured chip 
prove the efficacy of the proposed methodology - high accuracy 
for multiple defect (up to 0.86 accuracy and 0.93 AUC) and 
resolution prediction (up to 0.84 accuracy and 0.87 AUC), and 
over 98% of the runtime magnitude prediction is within the 
error of one magnitude. These results prove that the method 
can provide helpful information to guide prudent allocation of 
diagnosis resources.

I. INTRODUCTION

Given the inherent perturbations during the fabrication pro-
cess of integrated circuits (IC), diagnosis of failing chips is a 
key step during yield ramping and high-volume manufacturing. 
Diagnosis is a software-based process that identifies possible 
locations and/or behavior of defects in a failing chip. Diagnosis 
takes as input (i) design descriptions (i.e., a netlist and maybe 
its layout), (ii) test patterns, and (iii) tester responses (also 
referred to as the fail log) of a failing chip. The quality of 
a diagnosis outcome is defined by resolution and accuracy. 
Resolution is defined as the number of candidates reported, 
and if the actual defect lies in the candidate set of locations, the 
diagnosis is deemed to be accurate. The output of a diagnosis 
tool has many applications. For example, it serves as a guide 
for physical failure analysis (PFA) to identify root causes of 
the failure, thus assisting yield learning, and is often used in 
many volume-diagnosis applications (e.g., [1-7]).

Diagnosis plays an important role in yield learning, but a 
lot of uncertainty in the fabrication process brings a number 
of challenges. First, because of the increasing complexity 
of IC technology and design complexity, real defects may 
behave in an unexpected manner, i.e., different from the fault 
models implicitly used by diagnosis tools. In addition, fault 
equivalence/dominance relationships and the existence of mul-
tiple defects further confuse diagnosis tools. These and other 
challenges may result in diagnosis outcomes characterized 
by poor resolution or inaccuracy. Another concern is that 
diagnosis computation time may be very long, and there is 
no simple rule to predict runtime as demonstrated in [8]. 
Given the various sources of uncertainty in diagnosis, machine 
learning (ML) can be a useful tool in improving diagnosis 
quality because of its advantage in dealing with uncertainty 
and uncovering high-dimensional correlations.

!



allocating diagnosis resources.
The rest of this paper is organized as follows. Section

II reviews previous work on applying machine learning to
improve diagnosis efficiency. Section III describes the details
of the proposed methodology. Section IV demonstrates the
efficacy of our method predicting the diagnosis outcomes of
a test chip and a high-volume manufactured chip. Finally,
Section V concludes the paper and provides directions for
future work.

II. BACKGROUND

ML has shown its effectiveness in predicting diagnosis
outcomes [8]. That work uses three classifiers to predict
different aspects of a diagnosis outcome. The first classifier
targets an unwanted case in diagnosis, that is, diagnosis
failure. For a given fail log, sometimes diagnosis fails to
report any candidates, which is a common case especially
during yield ramp. Diagnosis failure may result from complex
defect behavior which does not match assumptions used by a
diagnosis tool. The second classifier predicts the failure type,
that is, whether failure is due to scan chain or logic. Because
yield learning methods are different for the two types of failure
and running diagnosis can be very time-consuming, it is also
beneficial to know the failure type in advance. The third clas-
sifier predicts whether the runtime will be “short” or “long”,
based on a user pre-specified threshold. This classifier enables
efficient allocation of computing resources for diagnosis. The
experiment results described in [8] demonstrate that the three
classifiers achieve superior prediction performance.

Although previous work has predicted useful information
before diagnosis, the results are still preliminary and only
cover limited aspects of diagnosis. First, chips fabricated in
a mature process seldom have very complex defects, thus it is
rare for diagnosis tools to report zero candidates when diag-
nosing failing chips manufactured in high volume. This makes
the first classifier less effective for high-volume manufactured
chips. In addition, only predicting the runtime as being “short”
or “long” is not sufficiently informative. Diagnosis practition-
ers would benefit more from knowing diagnosis run time more
precisely, allowing fail logs to be scheduled in a way that more
aptly meet their objectives. Finally, prior work does not predict
diagnostic resolution. It is not desirable to consume significant
compute resources on a diagnosis run when resolution is very
poor (e.g., >100).

III. METHODOLOGY

To overcome the limitations of [8], we develop a more
advanced ML-based framework to help improve diagnosis
efficiency. As illustrated in Fig. 1, the whole flow starts from
a fail log which records the failing outputs for each failing test
pattern. For a fail log that is yet to be diagnosed, the first step is
to extract features from the fail log. The features are composed
of two classes: manually designed features and signature-
based features developed based on domain knowledge. The
features are then fed into three predictors and a preview of the
diagnosis outcome is computed. These predictors are trained
on previously diagnosed fail logs. The rest of the section is
organized as follows. We first formally describe the problem
we are working on in Section III-A, and the machine learning
algorithm used is introduced in III-B. Another important
aspect, feature extraction, is described in III-C.

Fig. 1. Proposed framework for predicting diagnosis outcome.

A. Problem Formulation

We aim to predict three aspects of a diagnosis outcome:
(i) the order of magnitude of runtime; (ii) existence of mul-
tiple defects; (iii) resolution. Specifically, the first task is a
regression problem and the other two tasks are classification
problems. The three tasks are accomplished by the three
predictors illustrated in Fig. 1. Each predictor takes as input d
features that are extracted from fail logs, and outputs results
y1, y2, y3, respectively. The three predictors are succinctly
defined as follows:

• Real number predictor R: y1 ∈ R. If the predicted runtime
is t seconds, y1 = log10 t.

• Classifier C1: y2 ∈ {0, 1}. If the chip has only one defect,
y2 = 0; otherwise, y2 = 1.

• Classifier C2: y3 ∈ {0, 1}. If the resolution is acceptable
for further analysis, i.e., smaller than a certain threshold,
y3 = 0; otherwise, y3 = 1.

We do not aim to predict the exact runtime because the runtime
depends on the hardware configuration of the computer where
diagnosis runs, and may vary even if we run the same job on
the same computer. Instead, we predict the magnitude (defined
as log10 t here) because, based on our survey results, users
usually only need an approximation of the order of magnitude
of runtime.

For the classifier C2, the threshold of specifying an “ac-
ceptable” or “unacceptable” resolution can be determined by
the user. In the experiments, we set threshold = 3 in order to
coincide with the aforementioned survey results.

B. ML Algorithms

The Random Forest (RF) algorithm [11] is used due to its
good performance in many ML applications. RFs are capable
of both classification and regression tasks, so we use Random
Forest Classification (RFC) for predictors C1 and C2, and
Random Forest Regression (RFR) for the predictor R.

The final prediction of RFC and RFR comes from the
averaging classification and regression results of decision trees
(DTs). A DT recursively splits the data into two groups until
a pre-specified stop condition is met. Before executing each
split, DTs search over all binary splits of all variables for the
one that minimizes a statistic indicating partition optimality.
This optimality metric, is exactly the main difference between
using DTs for classification and regression.

While the commonly used optimality metric for RFC is Gini
impurity [11], RFR uses metrics such as Sum of squared errors

!

!



Fig. 2. Illustration of decision trees for (a) classification and (b) regression.

(SSE) [12]. The SSE of a split result is defined as:

SSE =
∑
i∈Gl

(yi − ȳl)
2 +

∑
j∈Gr

(yj − ȳr )
2, (1)

where Gl and Gr are the sample sets of the left and right
children nodes, respectively; yi and yj are the sample values
of in Gl and Gr , respectively; and ȳl and ȳr are the average
values of the two sets.

Fig. 2 shows how a DT works for classification and regres-
sion problems with a single feature x. For the classification
problem in Fig. 2(a), the prediction objective is the label y
with a binary value 0 or 1, while the regression objective y in
Fig. 2(b) is an arbitrary number. The partitioning methods of
the two problems are similar with respect to the tree structures;
the difference however is that for classification, the predicted
y in each leaf node is the label of the majority class, but
for regression, the predicted y value is the average of all the
sample values in the node.

C. Features
When practicing machine learning on real-world datasets,

feature extraction can sometimes affect the prediction perfor-
mance more than the algorithm. The features we use in this
work come from two sources: manually designed features and
signature-based features.

The authors of [8] use a set of manually-designed features,
which covers statistics derived from the test patterns, circuit
outputs and the error values recorded in the fail log. Features
include, for example, the number of failing patterns and failing
outputs, which are related to computation cost. Other statistics,
such as the average number of failing outputs having error
value 0 may indicate the existence of a stuck-at-0 fault in a
scan chain.

The manually-designed features incorporate domain knowl-
edge and have shown effectiveness in predicting some prelim-
inary diagnosis outcomes as discussed in [8]. We continue to
use these features in this work. However, these features still
miss important information that characterizes a failing chip.
For example, many of the manually-designed features include

Fig. 3. Illustration of fail-log signatures. × stands for a failure at the
corresponding output and test pattern.

counts of failing outputs or failing patterns, which does not
indicate the exact pattern or output that fails a certain chip. For
example, assume we have two failing chips, each failing for
one pattern at only one output, and both have the erroneous
value 0. The failing output of the first chip has an input cone
of 10,000 nodes, but the failing output of the second chip
only has an input cone of 1,000 nodes. Even if some nodes
can be ruled out by some intelligent diagnosis rules, we can
expect the resolution and runtime to be different for the two
chips. However, the two chips have exactly the same values
for the manually-designed features. Using these features will
not produce accurate results in this case.

To incorporate information of individual failing outputs and
patterns into our framework, we use fail-log signatures, which
are widely used for test compression. Authors of [13] have
used signatures as features to identify systematic defects. The
basic idea is described using Fig. 3, where the table shows
a typical fail log. For each failing pattern, i.e., T1 ∼ Tn, the
failing outputs are recorded and marked with a “×”. For each
output, i.e., O1 ∼ On, the number of patterns it fails for is
counted and recorded as an output signature. Similarly, the
number of failing outputs for each test pattern is counted and
recorded as a pattern signature.The two types of signatures
are combined into a fail-log signature for each failing chip.
Despite the rich information carried by signatures, we cannot
directly use them for our case due to the high dimensional
space. Specifically, modern ICs usually have hundreds of
thousands of outputs and at least several hundreds of test
patterns, which means the signature dimensional space will be
enormous. Such a huge dimension will have several negative
impacts: first, the computation cost will be too high to handle;
second, the machine learning algorithm is much more likely
to over-fit the dataset, especially when the number of data
samples is much smaller than the feature dimension.

To address these dimensional issues, dimensionality reduc-
tion of the original features is necessary. Among a variety of
dimension- reduction methods, Principal Component Analysis
(PCA) is widely used in the ML community because it is
both informative and efficient to compute. Intuitively, PCA
projects the original features to another coordinate system.
The projected directions are called principal components (PC).
The first PC captures the direction where the data set has the
largest variance. The second PC is orthogonal to the first PC,
and is the direction with the second greatest variance. PCA is
usually calculated from singular value decomposition (SVD)
of the data matrix X ∈ Rp×n, where p is the original feature
dimension and n is the sample size:

X = U · Σ · VT . (2)

In the above equation, columns of U are the principal vectors,

!

!



TABLE I
CHARACTERISTICS OF TWO INDUSTRIAL CHIPS.

Name Chip 1 Chip 2
Chip type Test chip High volume chip
Technology 28nm 90nm
No. of standard cells 4.4 million 9.3 million
No. of scan chains 12 103
Test set size 500 1,000
No. of fail logs 4,235 9,301
Fail-log data collection time 70 days 325 days

and columns of V are the coefficients for reconstructing the
samples. Taking the first d components and the corresponding
coefficients from U and V can reduce the feature dimension
from p to d. By performing PCA on fail-log signatures,
data dimension can be significantly reduced from over a
hundred thousand to a few hundred, which is a practical
dimension for RF to give reasonable prediction. Manually-
designed features and signature-based features are combined
into one feature vector, which provides information from both
individual outputs and domain knowledge. The effect of these
new features is discussed in Section IV.

IV. EXPERIMENT

In this section, we describe the details of experiments on
two industrial chips and show the efficacy of our proposed
framework.

A. Setup

Since diagnosis is an essential step for both process develop-
ment and high-volume manufacturing, two types of industrial
chips (Chip 1 and Chip 2) are used in the experiments. Chip 1
is a logic test chip for process development of a 28nm process.
Chip 2 is manufactured in a mature 90nm process in high
volume. Their characteristics are listed in Table I. Industrial
partners executed circuit test on manufactured chips, and fail
logs from 4,235 instances of Chip 1 and 9,301 instances of
Chip 2 are collected for analysis.

For each chip, half of the data is used for training and
the rest is used for testing. The features are a combination
of three parts: manually-designed features, pattern signatures
after PCA, and output signatures after PCA. We keep the
first 10 principal components for pattern signatures, and 100
principal components for output signatures.

To evaluate the performance of the three predictors R,C1,
and C2 of Fig. 1, we need to define proper metrics. For
the regression task R, we compare the predicted logarithm
of runtime and the logarithm of real runtime, and report the
ratio of samples that have error within a certain range. For
classification tasks C1 (predicting the number of defects) and
C2 (predicting whether resolution is acceptable), the measuring
metrics include accuracy, precision, recall, F1-score and Area
Under Curve (AUC). These metrics are calculated from four
statistics: True Positive (TP), False Positive (FP), True Nega-
tive (TN), False Negative (FN). TP stands for the number of
samples that are truly positive and predicted as positive. FP

TABLE II
ERROR DISTRIBUTION OF RUNTIME MAGNITUDE PREDICTION.

stands for samples with true label negative but predicted as
positive. TN and FN are defined similarly. The metrics are:

Accuracy =
TP + T N

TP + T N + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score =
2

1
Recall +

1
Precision

.

(3)

Precision and recall in Eq. 3 are defined for the positive class,
those for the negative class can be defined similarly. Precision
stands for the ratio that a sample predicted as positive is
actually positive. Recall means the ratio that a truly positive
sample is predicted correctly. AUC is a more reasonable metric
when two classes are imbalanced [14].

B. Runtime Prediction

Fig. 4 and Fig. 5 show the prediction results of runtime
for Chip 1 and Chip 2, respectively. Fig. 4(a) and Fig.5(a)
shows the real and predicted order of magnitude of runtime
for all the testing data, while Fig. 4(b) and Fig.5(b) shows
the prediction errors. In both prediction error plots, most of
the error values concentrate around zero. The orange band
represents the range that has absolute error smaller than 0.5
while the yellow band represents 1. Over 95% of samples of
Chip 1, and over 99 % of samples of Chip 2 have absolute
error below 0.5, which means that the real runtime lies within
the range between one third and three times of the predicted
runtime. It is not exact, but sufficient for an estimation of the
order of magnitude of runtime. A more detailed summary of
error distribution is shown in Table II which lists the ratio of
samples with absolute error smaller than different thresholds.
Specifically, 61.2% of the Chip 1 samples and 86.3% of the
Chip 2 samples have absolute error smaller than 0.1, meaning
the true runtime lies within the range of 0.8 times to 1.3 times
of the predicted time. These results show that the learned
predictor can provide a very reasonable estimation of diagnosis
runtime. Practitioners therefore can use such information for
better allocation of diagnosis resources.

To further demonstrate the efficacy of the runtime predictor,
we calculate the mean absolute error (MAE) of the order of
magnitude of runtime. In this experiment, we keep 20% data
as the test set, and run regression using different training sizes.
The plot of MAE with respect to varying training size is shown
in Fig. 6. The MAE for Chip 1 is as small as 0.18 even when
the training size is only 340 samples, meaning that the real
runtime range lies within 0.6 times to 1.5 times of the predicted
runtime. The MAE for Chip 2 is even lower and achieves 0.06

!

!



with 2,000 training samples, meaning the true runtime range
is 0.9 times to 1.2 times of the predicted runtime, which is a
very accurate estimation.

Fig. 4. Distribution of (a) runtime and (b) prediction error for Chip 1.

Fig. 5. Distribution of (a) runtime and (b) prediction error for Chip 2.

Fig. 6. The change in mean absolute value (MAE) of runtime magnitude
prediction with different training sample size for (a) Chip 1 and (b) Chip 2.

C. Defect Number Prediction
The defect number prediction results for the two chips are

shown in Table III. As explained before, half of the data are
used for training and the rest for testing. Since Chip 1 is
a logic test chip manufactured in an immature process with

TABLE III
PREDICTION OF DEFECT NUMBER FOR (A) CHIP 1 AND (B) CHIP 2.

many unknown defects, the diagnosis tool fails to report any
candidates for 54% of chips. Such chips can be identified by
the method described in [8], so these chips are not included
for defect number prediction. Table III shows that the trained
classifier C1 achieves test accuracy of 0.83 for Chip 1 and 0.86
for Chip 2, and the AUC values for both chips are over 0.90.
These results show that the trained classifier is quite effective
in predicting whether the chip has a single or multiple defects.

Note that for diagnosis purpose, a more accurate prediction
result for single defect is preferred. A circuit with a single
defect is much easier to diagnose than those with multiple
defects - the former is more probable to be successfully
diagnosed and typically requires shorter runtime. Therefore,
accurately picking out fail logs with a single defect helps
practitioners to obtain evidence concerning fabrication issues
much more efficiently. The results in Table III show that the
classifier achieves high precision and recall for single defect
prediction. This means that the classifier can not only identify
most of the fail logs with a single defect, but also successfully
exclude most multiple-defect circuits that are inefficient to
diagnose. In this way, we guarantee very limited information
loss from single-defect ICs and also enlighten allocation of
diagnosis resources on multiple-defect cases.

To determine how many training samples are necessary
for adequate classifying results, we set 20% of the data as
test set, and run the prediction for different training-set sizes.
The trends of AUC, accuracy, precision and recall for each
of the classes are illustrated in Fig. 7 (a) for Chip 1. The
prediction performance stabilizes after 2,000 training samples
for Chip 1, meaning that 2,000 samples are sufficient for
accurate prediction of multiple defects. The trends for Chip
2 are shown in Fig. 7 (b), showing that 4,000 samples are
sufficient to produce satisfactory prediction.
D. Resolution Prediction

The results for resolution prediction are shown in Table
IV. Similar to defect number prediction, we exclude the chips
that diagnosis tools fail to report any defect candidates. Chips
with resolution ≤ 3 are defined to have acceptable resolution.
Table IV (a) shows that the accuracy for Chip 1 is 0.84 and
the AUC value is also high at 0.87. Specifically, recall for
class 0 is high (0.91), meaning that few chips with acceptable
resolution are predicted incorrectly. We therefore do not lose
much information from diagnosing such chips while saving
significant compute resources from diagnosing chips with poor
resolution.

!

!



TABLE IV
PREDICTION OF RESOLUTION FOR (A) CHIP 1 AND (B) CHIP 2.

On the other hand, resolution prediction for Chip 2 is not
very successful, with accuracy being 0.67 and AUC being
0.72. A possible reason is that Chip 2 is a much more complex
circuit compared to Chip 1. Chip 2 has nearly 0.8 million
outputs. Keeping only 100 principal components of output
signatures is likely not sufficient. However, increasing the
number of components not only increases computation time,
but also increases the chance of over-fitting. The best way
to enhance its performance is to acquire more training data,
however it is not practical here. Another possible solution is
to use data augmentation methods to generate virtual fail logs
as more training samples, which is a focus of our future work.

Fig. 7. The change in AUC, accuracy, precision and recall for (a-b) defect
number prediction and (c-d) resolution prediction for different training sample
sizes.

Similar to defect number prediction, the trends of AUC,
accuracy, precision and recall for resolution prediction of two
chips are shown in Fig. 7 (c) and (d). It is observed that 2,000
samples are sufficient for Chip 1 to have stable prediction
performance. Although the prediction performance for Chip 2
is not satisfying, some metrics such as AUC keep increasing
with larger training size, which means we may have better
performance if more data is available.

We have compared the results using only the manually-
designed features from [8] and the new features based on fail-
log signatures. For runtime prediction, using these new fea-
tures provides up to an 18% reduction of mean absolute error.

For classification tasks, we observe up to a 6% improvement
of AUC for resolution prediction and 1% for defect number
prediction using the new features.

The three predicted aspects, together with other information
such as other aspects predicted in [8], provide practitioners
with a comprehensive preview of diagnosis outcome, which
enables reasonable prioritization of fail logs and smart alloca-
tion of diagnosis resources. For example, the fail logs that are
predicted to have a single defect, good resolution and short
runtime are more desirable, and should be diagnosed first. In
contrast, fail logs that are predicted to have many candidates
and long run time can be skipped or scheduled later, only if
resources are available.

V. CONCLUSION

In this work, we propose an ML-based framework for
obtaining a preview of diagnosis outcomes. Compared to
previous work, this work targets more informative aspects of a
diagnosis outcome: runtime magnitude, existence of multiple
defects, and resolution. This work also uses features from fail-
log signatures for better prediction. Experiments on industrial
chips show the effectiveness of the proposed method - 98%
of the prediction error of the order of magnitude of runtime is
within ±1, and the prediction of multiple defects has up to 0.86
accuracy and 0.93 AUC (Area Under Curve). The resolution
classifier also achieves up to 0.84 accuracy and 0.87 AUC on
one of the chips investigated.

This proposed method provides helpful information to help
practitioners allocate diagnosis resources more prudently. Fu-
ture work includes using data augmentation to generate more
accurate predictors, especially for resolution prediction for
complex circuits.

REFERENCES

[1] Y. Xue et al., “PADRE: Physically-Aware Diagnostic Resolution En-
hancement,” International Test Conference, 2013.

[2] Y. Xue, X. Li, and R. D. Blanton, “Improving Diagnostic Resolution of
Failing ICs through Learning,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2016.

[3] C. Lim et al., “Diagnostic Resolution Improvement through Learning-
Guided Physical Failure Analysis,” International Test Conference, 2016.

[4] B. Benware et al., “Determining a Failure Root Cause Distribution from
a Population of Layout-aware Scan Diagnosis Results,” IEEE Design &
Test of Computers, 2012.

[5] Y.-T. Lin and R. D. Blanton, “METER: Measuring Test Effectiveness Re-
gionally,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2011.

[6] J. E. Nelson et al., “Extracting Defect Density and Size Distributions
from Product ICs,” IEEE Design & Test of Computers, 2006.

[7] R. D. Blanton et al., “Yield Learning through Physically Aware Diag-
nosis of IC-Failure Populations,” IEEE Design & Test of Computers,
2012.

[8] Q. Huang et al., “Improving Diagnostic Efficiency via Machine Learn-
ing,” International Test Conference, 2018.

[9] J. E. Nelson, W. C. Tam, and R. D. Blanton, “Automatic Classification
of Bridge Defects,” International Test Conference, 2010.

[10] H. Wang et al., “Test-data Volume Optimization for Diagnosis,” Design
Automation Conference, 2012.

[11] L. Breiman, “Random Forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[12] A. Géron, Hands-on machine learning with Scikit-Learn and Tensor-
Flow: concepts, tools, and techniques to build intelligent systems. ”
O’Reilly Media, Inc.”, 2017.

[13] L. M. Huisman, M. Kassab, and L. Pastel, “Data Mining Integrated
Circuit Fails with Fail Commonalities,” International Test Conference,
2004.

[14] I. H. Witten et al., “Data Mining: Practical Machine Learning Tools and
Techniques,” Morgan Kaufmann, 2016.

!

!




