
Improving Diagnosis Efficiency via Machine Learning
Qicheng Huang, Chenlei Fang, Soumya Mittal and R. D. (Shawn) Blanton

Advanced Chip Testing Laboratory (www.ece.cmu.edu/∼actl/)
Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

{qichengh, chenleif, soumyami, rblanton}@andrew.cmu.edu

Abstract—Logic diagnosis, the process of identifying and lo-
cating possible defects in failing integrated circuits, is a key
step in yield learning for both technology development and high-
volume manufacturing. However, resources can be easily wasted
if diagnosis results in no meaningful information, or if the type
of diagnostic result is not actionable. It would therefore be
very beneficial to have a comprehensive preview of diagnostic
outcomes beforehand, which allows diagnosis resources to be
prioritized in a more reasonable and effective way. In this work,
a methodology is developed to predict whether a fail log for a
given design will result in a diagnosis outcome that is meaningful
for the purpose at hand. Specifically, the aim is to predict the
time required for diagnosis, and whether diagnosis produces any
defect candidates, and if so, are those candidates the result of logic
failure or chain failure. Random Forest classification algorithm
is used for prediction. Experiments on a 28nm test chip and
a high-volume 90nm part illustrate that the methodology can
provide accurate prediction results (0.95+ precision, 0.9+ recall
and F1-score, and 0.96+ AUC on average) when two classes are
balanced, and satisfactory results (0.95+ recall and 0.98+ AUC
on average) when two classes are imbalanced.

I. INTRODUCTION

Yield learning, the task of identifying and mitigating sources
of yield loss, remains an integral and important task in devel-
oping an advanced semiconductor technology. It remains im-
portant as technology development transitions to high-volume
manufacturing. For both development and high-volume man-
ufacturing, yield learning for logic presents unique challenges
because of the virtually unlimited layout patterns that are
created by new cell libraries and the techniques employed
by evolving place-and-route algorithms. Under both scenarios,
logic-circuit diagnosis for both locating and characterizing
failure is a key first step in yield learning.

Logic diagnosis takes as input a logic-circuit description,
the applied set of test patterns, and a fail log for a tested
fabricated instance of the circuit. A fail log is a straightforward
tabulation of the primary and scan outputs that have failed
for all or a subset of the test set. Traditionally, the quality
of a diagnosis is measured in terms of its resolution and
accuracy. Resolution is the number of possible locations or
defects where the actual failure can reside, and a diagnosis
is deemed accurate if one of the reported locations/defects
corresponds to the actual failure. Increasingly important is the
amount of time required to perform diagnosis, and whether
or not diagnosis will report any meaningful information. For
example, Fig. 1(a) shows a histogram of the runtime required
to diagnose on 4,235 fail logs for a test chip fabricated at the
28nm technology node. The data has been partitioned into

Figure 1. Histograms of diagnosis runtime for (a) a 28nm test chip and (b)
a high-volume 90nm chip.

three sets: blue represents cases where diagnosis reports a
set of locations (i.e., logic failure), yellow represents cases of
scan-chain failure (i.e., chain failure), and red indicates those
cases where diagnosis fails to report any locations (i.e., no
result). The total amount of runtime to perform diagnosis on
these fail logs exceeds a million seconds (12 days) on a state-
of-the-art server, and the percentage of fail logs that report no
meaningful information (the red portion of the plot) is 54%.

We have surveyed nearly a dozen experts in industry con-
cerning the amount of diagnosis performed during technology
development and high volume manufacturing. These experts
include representatives from foundries, integrated device man-
ufactures, and fabless design houses. Several of them indicated
that the number of diagnoses performed per week per design
during technology development can be 10,000, and one in-
dicated that number exceeds 100,000. Given the amount of
diagnoses during technology development that can lead to no
actionable information (54% in Fig. 1(a)), it would be very
beneficial to know beforehand which failure logs would result
in “no result”, and those that result in either logic circuit or
chain failure since different yield learning techniques can be
brought to bear.

Fig. 1(b) plots the data for a 90nm high-volume part.
Although the number of diagnoses that result in no actionable
information (3%) and chain failure (1.2%) is much less than
the test chip, the runtime for a diagnosis can vary signif-

1



icantly, ranging from 0.43 to 24,622 seconds. In a high-
volume scenario, it is typically the case that failures have
been categorized via a failure pareto as illustrated in Fig.
2. Yield learning often targets the largest bar in the pareto
because identifying and remedying the root cause associated
with this source of yield loss results in the largest gain in
yield. But as already demonstrated, resources can be easily
wasted if diagnosis results in no meaningful information, or if
the type of result is not actionable (e.g., chain failure). Similar
to technology development, it would therefore again be very
beneficial to know beforehand which fail logs during high-
volume manufacturing would result in actionable information.
Moreover, for a given set of fail logs, like those associated
with the largest source of yield loss as indicated by a pareto,
a constraint on diagnosis resources, and with all other things
being equal, it is prudent to choose fail logs that have short
runtime. This conclusion is congruent with our survey because
practitioners that are handling large numbers of diagnoses
indicate that sampling must be employed, implying that there
is indeed limited resources for diagnosis.

Based on the aforementioned, the objective of this work
is to develop a methodology for predicting whether a fail
log for a given design will result in a diagnosis outcome
that is meaningful for the purpose at hand. Specifically, our
aim is to predict the time required for diagnosis, and whether
diagnosis produces any defect candidates, and if so, are those
candidates the result of logic failure or chain failure. Our
preliminary analysis reveals that there is no simple correlation
between fail-log features and runtime or diagnosis success. For
example, Fig. 3 plots diagnosis runtime versus the number of
failing outputs for both the test chip and high-volume part of
Fig. 1(a) and 1(b), respectively. So we have employed machine
learning (ML) to uncover higher-dimensional correlations
between diagnosis outcomes and fail log features. For chain
failures, special tests called flush tests [1] are typically used
to ascertain chain integrity before further diagnosis – circuits
failing in flush test are considered to have scan-chain failures.
However, a flush test is not always in 100% correlation with
chain failure. For example, it is possible that a flush test misses
a scan-cell internal stuck-open fault [2] or an intermittent fault
[3]. On the other hand, circuits with faults outside the scan
chains can also fail a flush test. We will show in Section III that
a considerable portion of circuits that fail the flush test are later
diagnosed as either a logic failure or unsuccessfully diagnosed.
These circuits may suffer from compound defects [4], which
means there exist both chain defects and logic defects. Such
a situation can be too complex for available diagnosis tools
to obtain a reasonable diagnostic result, or simply lead a tool
to explain the failures with simpler logic faults (rather than
chain faults). In this case, directly classifying the chip as
having chain defects due to the flush test failure will miss the
opportunity to find logic faults or waste time in un-diagnosable
fail logs. ML can therefore be used to improve the accuracy
of chain failure prediction, on top of the flush-test results.

There has been prior work that has used ML in diagnosis.
In [5], a random forest is used to predict whether a diagnosis
outcome from a given fail log is due to a bridge defect. In

Figure 2. Typical failure pareto for high-volume part.

Figure 3. Plot of diagnosis runtime versus the number of failing outputs for
(a) a 28nm test chip and (b) a high-volume 90nm chip.

[6], ML predicts in real time how much fail data should be
collected for a high-quality diagnosis. In [7-9], the authors
use a learned support-vector machine model based on volume
diagnostics to improve diagnostic resolution. Volume diagnos-
tics and ML techniques are also used to check the efficacy
of DFM rules and to identify systematic defects in [10, 11],
and [12, 13] respectively. The authors of [14] apply neural
networks to match the faulty behavior of a chip with certain
fault models. The authors of [15] identify defective scan chain
cells by using unsupervised learning. In [16], hierarchical
clustering is used to group similar fail logs and to help identify
systematic defects. Except for [6], the work proposed here is
a complement to all aforementioned work because the goal is
to generally predict the outcome of diagnosis before diagnosis
is executed. The work in [6] has a similar goal but it is used
to govern the decision of whether collecting more fail data
will lead to higher-quality diagnosis result, while the work
here assumes that the fail data of a given fail log is fixed.
But given that both approaches have somewhat differing goals,
both approaches, in theory, can be combined to achieve both
sets of goals.

The rest of this paper is organized as follows. Section II
describes the details of the proposed methodology; Section III
demonstrates the efficacy of our method in experiments that
use the 28nm logic test chip and a high-volume 90nm part of
Fig. 1(a) and 1(b), respectively. Finally, Section IV concludes
the paper and provides directions for future work.

2



II. METHODOLOGY

To facilitate efficient diagnosis, we aim to predict three
aspects of diagnosis: (i) diagnosis success; (ii) failure type
(logic vesus chain); (iii) runtime. These three aspects provide
a comprehensive preview of diagnostic results, and allows
diagnosis resources to be prioritized in a more reasonable and
effective way.
• Diagnosis success: We consider a diagnosis run to be

successful if it reports one or more candidate(s) for each
defect within a failing circuit. According to survey results,
a majority of the practitioners indicated that they have
encountered cases of unsuccessful diagnosis runs, and
three indicated diagnosis fails to report any candidates for
more than 50% of the time . With the capability to predict
diagnosis success, diagnosis resources can be efficiently
allocated. For example, fail logs that would result in the
reporting of zero candidates can altogether be ignored or
scheduled lastly.

• Failure type: For a fail-log diagnosis that does result in
candidates, the failure type can be broadly divided into
two classes: scan-chain and logic. If the diagnosis tool
reports candidates for one or more defects in the scan-
chains, then the failure type is deemed to be of type chain;
otherwise the failure type is deemed to be of type logic.
The yield learning methods brought to bear for scan-chain
and logic failures can be quite different, so knowing the
failure type beforehand can enable the proper allocation
of resources. For example, one may want to initially focus
on chain failures because of the existence of state-of-the-
art chain debug capabilities like those described in [17].

• Runtime: Based on whether the predicted runtime for
a given fail log is long (i.e., exceeds a user-defined
threshold), it can be decided whether it is worthwhile to
run the diagnosis, or if it is more prudent to order fail logs
by running the most promising and fast diagnosis first. In
the survey conducted, 84% of respondents indicated that
diagnosis runtime that exceeds 1,000 seconds is too long.
In addition, survey respondents that indicated the need
to sample the large number of weekly fail logs could
effectively increase their sample size by using those fail
logs predicted to have acceptable runtime.

In this section, we first formulate the mathematical problem,
then introduce the ML algorithm and the features we exploit.
In the two scenarios we are considering (i.e., technology yield
ramp and high-volume manufacturing), it is unavoidable to
encounter imbalanced data. For example, for a chip during
high-volume manufacturing, the ratio of scan-chain failure or
failed diagnosis can be extremely low. So we also discuss
the measures for such cases, including how to choose proper
evaluation metrics and how to control the trade-off between
the imbalanced classes.

A. Problem Formulation

Three classifiers C1,C2 and C3 are trained to predict diagno-
sis success, failure type and runtime, respectively. As shown
in Fig. 4, d features are extracted from each fail log and

Figure 4. Based on the features derived from a given fail log, three classifiers
C1,C2 and C3 are trained to predict three aspects of diagnostic results,
including diagnosis success, failure type and runtime. x is a vector containing
d features. y1, y2 and y3 are three discrete variables indicating the prediction
results.

Figure 5. An illustration of the confusion matrix of a binary classifier.

represented as a d-dimensional vector x. The predictive results
of three classifiers are encoded as three binary variables y1, y2
and y3, respectively. The variable concerning runtime, y3, can
also have more than two values if a user wants to predict
certain ranges that the runtime falls in, instead of simply being
short or long. The threshold that defines the range of the bins
can be decided by the user preference, or judiciously derived
from the runtime distribution estimated from training data.

We divide all the available data samples into a training set
Dtrain = {Xtrain,Ytrain} and a test set Dtest = {Xtest,Ytest }.
The training data include the features extracted from the
already diagnosed fail logs (i.e., Xtrain) and the diagnosis
information extracted from the corresponding diagnostic re-
sults (i.e., Ytrain). Xtest represents the information extracted
from fail logs that have not yet been diagnosed. The classifiers
aim to take in Xtest and generate prediction results that best
match the ground truth, namely, Ytest that results from running
diagnosis on the fail logs corresponding to Xtest .

Precision, recall, F1-score and AUC [18] are used to eval-
uate the matching extent between the predicted and the true
labels (i.e., the values of y1 ∼ y3). Precision, recall and F1-
score can be directly computed from a confusion matrix. Fig. 5
shows a confusion matrix for a binary classifier. TP, FP,T N
and FN represent the number of samples with different
predicted and true labels, as shown in Fig. 5. Precision, recall
and F1-score are then defined in equations (1)-(3):

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-score =
2

1
Recall +

1
Precision

. (3)

Precision represents the probability that (a randomly se-
lected) sample predicted positive is truly positive, while recall

3



represents the probability that a (randomly selected) truly
positive sample is correctly predicted. F1-score is the harmonic
mean of precision and recall. Its value will be low if either
precision or recall is low. These three metrics in (1)-(3)
evaluate the classification results for each class.

For the evaluation of overall classification performance,
accuracy is a commonly-used metric, which is defined as the
ratio of correctly-predicted samples. However, it is not used
here, because the error of the minority class can be easily
masked by the majority class when two classes are imbalanced.
Instead, AUC (i.e., area under the curve) is a more reasonable
indicator of the overall performance, since it is not sensitive
to imbalanced classes. AUC also works as a complementary
metric to precision, recall and F1-score by exposing additional
performance information. The details of the imbalanced-class
case and AUC are introduced in Section II.D.

B. Classification Algorithms
As the No Free Lunch Theorem [19] claims, there is no

one best algorithm that does best in all cases. Therefore,
several ML algorithms that we believe are suitable for
the classification task are applied, and the one with the
best performance is selected. From straightforward plots of
samples, the decision boundary is expected to be highly
nonlinear. Hence, we consider several supervised learning
methods that are capable of classifying non-linearly separable
data, such as Kernel Support Vector Machine [20, 21] and
Random Forest (RF) [22]. Since RF outperforms other
algorithms in the experiments, here we mainly give a brief
introduction of RF.

RF is increasingly popular in recent years because of its
good performance. Essentially it is an ensemble method based
on decision trees. A decision tree learns a tree-structured
model from the training samples, with each leaf representing
a classification result. For each internal node, one feature
is selected as the optimal split criteria at the current level.
There are several metrics to measure the quality of a split.
In this work, we use Gini impurity, which is commonly used
in decision tree algorithms such as CART [23]. Gini impurity
measures the probability that a sample in a set has the correct
label if it is labeled randomly with the distribution of the
overall set. Suppose we have M possible classes and pi denotes
the fraction of samples that belong to class i. Gini impurity g
is then computed as:

g =

M∑
i=1

pi
∑
k,i

pk =
M∑
i=1

pi(1 − pi) = 1 −
M∑
i=1

p2
i . (4)

Gini impurity reaches its minimum (zero) when all samples
in the node fall into a single target category. At each node,
the weighted sum of Gini impurity gws of the left and right
children after a split is computed as

gws =
Nl

Nc
gl +

Nr

Nc
gr, (5)

where Nc is the number of samples at the current node, Nl

and Nr are the sample number in the left and right children
of the current node, and gl and gr are the Gini impurity of

the left and right children, respectively. The feature resulting
in the minimal gws is then chosen for the current split.

While a decision tree is easy to implement and interpret,
it is not robust. A small change in the training samples can
result in a totally different tree. A single decision tree is
also prone to over-fitting the training set. A RF overcomes
these disadvantages with ensemble learning [22]. A RF is
an ensemble of decision trees and it has two degrees of
randomness. Firstly, the training samples for each tree is
generated from bootstrap sampling (random sampling with
replacement) of the whole training set. In this way, each tree
has a different subset of training data, although drawn from the
same distribution. Secondly, when searching for the optimal
split at each node, only a subset of all features are selected. A
RF performs the final classification by taking a majority vote
over the predictions made by each tree. From this process, a
RF achieves much lower variance [24] than a single decision
tree, at the expense of slightly increasing the fitting bias [24].

For RF, several hyper-parameters need to be carefully tuned
for best prediction performance. These hyper-parameters con-
trol the structure of RF and thus determine the complexity
of the overall mathematical model. An over-simple model has
limited representational capacity to learn enough information
from all the data (i.e., under-fitting), while an over-complex
model tends to fit noise/outliers (i.e., over-fitting). The hyper-
parameters we concern about are:
• The number of trees in a forest.
• The number of features to consider for each tree. With

a higher value of this number, the bias of each tree
decreases. However, the trees will be more similar and
the randomness of the forest will decrease along with a
higher risk of over-fitting.

• The maximum depth of each tree or the minimum number
of samples required to split an internal node. It is also
used to control the trade-off between the bias of each
tree and the risk of over-fitting.

In practice, the values of the hyper-parameters can be
determined by cross validation [25].

C. Features
Besides suitable ML algorithms, using proper features is

also a key factor for efficient classification. We extract 30
features that we believe represent important characteristics of
fail logs (Table I).

Feature Description
The features mainly concern two attributes of a fail log:

failing patterns and failing outputs. Suppose there are n
primary/scan outputs in a circuit, and a total of m test patterns
in the complete test set. The authors in [16] propose to use
two vectors with dimensions m and n as signatures to rep-
resent each distinct fail log. These features, however, are not
practical for today’s complex ICs. Modern ICs usually have
tens of thousands of outputs and are tested with thousands of
test patterns, which produces an incredibly high-dimensional
feature space. Directly using the data as features can easily
cause over-fitting for ML. Therefore, it is necessary to find a

4



TABLE I
FEATURES EXTRACTED FROM FAIL LOGS.

No. Feature Feature description
1 num fail pattern number of failing patterns.
2 num fo total number of failing outputs (total number of failures).
3 num uniq fo number of unique failing outputs.
4 max fo maximum number of failing outputs per failing pattern.
5 min fo minimum number of failing outputs per failing pattern.
6 mean fo average number of failing outputs per failing pattern.
7 num fo 0 total number of failing outputs having error value 0.
8 num uniq fo 0 number of unique failing outputs having error value 0.
9 max fo 0 maximum number of failing outputs having error value 0 in one pattern.
10 min fo 0 minimum number of failing outputs having error value 0 in one pattern.
11 mean fo 0 average number of failing outputs having error value 0 in one pattern.
12 num fo 1 total number of failing outputs having error value 1.
13 num uniq fo 1 number of unique failing outputs having error value 1.
14 max fo 1 maximum number of failing outputs having error value 1 in one pattern.
15 min fo 1 minimum number of failing outputs having error value 1 in one pattern.
16 mean fo 1 average number of failing outputs having error value 1 in one pattern.
17 num fail sc number of failing scan chains.
18 fo only 0 number of failing outputs that only have error value 0.
19 fo only 1 number of failing outputs that only have error value 1.
20 fo both number of failing outputs that have error value both 0 and 1.
21 fail pattern 0 number of failing patterns that only have failures with error value 0.
22 fail pattern 1 number of failing patterns that only have failures with error value 1.
23 fail pattern both number of failing patterns that have failures with error value 0 and 1.
24 pattern single sc number of patterns that fail for only one scan chain.
25 pattern multi sc number of patterns that fail for more than one scan chain.
26 mean pattern sc nhe average number of scan chains each failing pattern fail for.
27 sc single pattern number of scan chains that fail for only one pattern.
28 max output sc maximum number of failing outputs per scan chain.
29 diff max output sc the difference between num fo and max output sc.
30 fail flush test whether the chip fails for flush test.

smaller set of higher-level features that are representative of
the fail-log information.

Obvious features pertinent to diagnosis, such as the number
of failing patterns, the number of (total) failing outputs and
the number of unique failing outputs are extracted. If a certain
output fails for three times with respect to different test
patterns, the number of failing outputs is three while the
number of unique failing outputs is one. To characterize the
behavior of a faulty circuit under different failing patterns, the
max/min/average number of failing outputs for each pattern is
also computed. In addition, the above calculations are repeated
for failing outputs with failure values 0 and 1 respectively, as
a decomposition of the total number of failures.

On the other hand, currently most integrated circuits are
equipped with multiple scan chains to reduce test cost. Logic
elements connected to the same scan chain are in close
proximity, so a scan chain provides some physical information
concerning logic elements. For example, suppose two scan
chains A and B are connected to logic elements that are not in
proximity, and thus share no common elements. If both A and
B contain faulty outputs, it is an indicator of possible existence
of multiple defects. Hence, feature 17 (num fail sc) is added
among the collection of features. It is also intuitive that since
a defective scan chain exhibits a long sequence of failing
bits, a feature such as no. 28 (max output sc) and no. 24
(pattern single sc) may be helpful in identifying such defects.
An additional feature, no. 30, reflects the flush-test outcome is
also used, since flush-test failure is a strong indicator of chain
failures (despite its imperfection mentioned in Section 1). In

this way, we include the information from flush test for chain-
failure prediction. The ML prediction result is expected to be
more accurate than just the flush test, due to the additional
information from other features.

It is obvious that some features in Table I are correlated,
but we do not apply a feature dimension reduction process
(e.g., principal component analysis) before training. The
reasons are (i) the feature dimension is not high compared to
the number of training samples; (ii) a RF can automatically
identify important features during the learning process by
feature selection for splitting; (iii) using the features directly
are more convenient for model interpretation, especially for
RF.

Feature Importance
After the classifiers are trained, the quantification of feature

importance provides crucial information to understand the
trained models. We should note that the goal of calculating the
feature importance is not to select a compact set of features
for training, but to find important variables highly related to
the objective variable for interpretation.

Feature importance can be conveniently calculated from a
RF. Gini impurity reduction and permutation importance are
two commonly-used metrics to measure feature importance
[26]. In this paper, we use Gini impurity reduction bacause
it can be conveniently calculated from the training of a RF.
It measures how much each feature reduces the weighted
impurity in a tree. The weighted Gini impurity reduction
Giniwr is defined as:

5



Figure 6. Ten samples are sorted according to their probability score of being
in class C1 as reported by different classifiers. (a) Precision and recall of the
two classifiers are the same, however Classifier A has higher AUC and better
discriminating power. (b) With the same probability score ranking, different
threshold values lead to different precision and recall.

Giniwr =
Nc

N
(gc − gws), (6)

where N is the total number of training samples, Nc is the
number of samples at the current node, gws is defined in
Eq.(5), and gc is the Gini impurity of the current node. For
a RF, the impurity reduction from each feature is averaged
and then are ranked according to this measure. In order
to eliminate the mutual importance reduction effect among
correlated features, we also use Recursive Feature Elimination
(RFE) algorithm [27] to select the most important features.

D. Imbalanced Data

During high-volume manufacturing, because the process
is typically mature and thus yielding appropriately, it is less
likely that multiple, interactive defects exist within a single
chip. As a result, faulty behavior exhibited by a failing chip
can be comprehensively diagnosed by commercial tools. This
leads to few cases for which diagnosis fails to report any
candidate for defects (i.e., diagnosis failure). In addition, it
can also be true that few failures solely involve the scan
chains especially when the amount of chain die area and
layout-pattern irregularity is limited. Such cases lead to
imbalanced data, that is, two classes that have extremely
different sizes. Imbalanced data make model training and
evaluation difficult. Here, we discuss the importance of using
the metric AUC for imbalanced data, and demonstrate the
trade-off between precision and recall for the minority class.

Evaluation Metric
When two classes are not completely separable (i.e., two

classes have overlap within their feature space), it is usually
difficult to achieve high precision and recall simultaneously for
the minority class. The reason is, in order to obtain a higher
precision for the minority class, the boundary must be biased
towards the other side to include more minority-class samples.

At the same time, it inevitably includes more samples from
the majority class, leading to a lower precision.

In order to evaluate the classifier performance in a more
meaningful manner, we use the Area Under the Curve (AUC)
metric. AUC refers to the area under Receiver Operating
Characteristic (ROC) curve [28]. It represents the probability
that a random positive sample ranks higher than a negative
sample, and is not sensitive to imbalanced data. It is also a one-
number statistic that adequately encodes the prediction goal,
thereby allowing different classifiers to be easily compared.
The AUC calculation uses the fact that many ML algorithms
not only generate a classification result, but also a probability
of one sample being labeled as positive. For example, in a
RF, the class probability of an input sample is calculated as
the mean predicted probabilities of the trees in the forest. The
predicted probability of a tree is the fraction of samples of the
same class in a leaf.

Fig. 6(a) illustrates a case where AUC works as a comple-
mentary metric to precision and recall by providing additional
performance information they fail to show. The ten samples
in Fig. 6(a) include eight samples of Class 1 (Cls1) and two
samples of Class 2 (Cls2), an imbalanced case of 80% versus
20%. Classifiers A and B are applied to the samples and
report the probability of each sample being in class Cls1.
The samples are sorted according to the probability score.
Those above a given threshold (shown as a dashed line in
Fig. 6) are classified as Cls1 and the ones below as Cls2.
Since the minority class only has two samples, both classifiers
have the same low values for precision and recall (both 0.5).
However, it is obvious that classifier A performs better than
classifier B, because for classifier A, the two Cls2 samples
have probabilities more associated with a Cls2 prediction. By
slightly increasing the threshold of Classifier A, both the recall
and precision for Cls2 can be improved. However, we cannot
observe the same improvement if we raise the threshold to
the same extent for Classifier B. This difference of prediction
performance is reflected in their AUC scores:

AUCA = 0.9375,AUCB = 0.5625.

Thus, classifier B performs much worse in separating the two
classes.

Since AUC is not sensitive to imbalanced classes and is
a one-value metric summarizing the classification capability,
we use it to evaluate prediction performance, in addition to
the precision, recall and F1-score. AUC is also used as the
optimization goal when choosing hyper-parameters during
cross validation.

Trade-off Control
Because satisfactory precision and recall of a minority class

cannot be simultaneously achieved when classes are imbal-
anced and not completely separable, it is desirable to control
the trade-off between recall and precision of the minority class.
Therefore, two strategies that effectively adjust the trade-off
are described.

The first strategy adjusts the weights of the two classes. RFs
are sensitive to imbalanced data. A RF may ignore the minority

6



TABLE II
CHARACTERISTICS OF TWO INDUSTRIAL EXAMPLES.

Name Chip 1 Chip 2
Chip type Test chip High volume chip
Technology 28nm 90nm
No. of standard cells 4.4 million 9.3 million
No. of scan chains 12 103
Test set size 500 1000
No. of failing chips 4235 9301
Fail-log data collection time 70 days 325 days

TABLE III
THE NUMBER OF FAIL LOGS THAT FAIL THE FLUSH TEST.

class if the samples are too few to have much influence on the
weighted Gini impurity calculation. The most direct solution
for imbalanced data is to simply adjust the size of either
class through over-sampling, down-sampling or the synthesis
of new samples using interpolation [29]. Here, class weight
adjustment is employed. That is, all the samples in the minority
class are assigned a higher weight than the majority class when
calculating the Gini impurity for a RF. If we set the weight
ratio of minority and majority class to be N:1, it is equivalent
to every sample in the minority class being re-sampled N
times. In this way, the classifier adds priority to the minority
class leading to an improvement in minority-class prediction
performance. This improvement for the minority class comes
at the expense of more errors for the majority class. As a
result, the minority class will have a higher recall but lower
precision. By adjusting the weights assigned to each class,
trade-off becomes straightforward.

Another strategy is to change the probability threshold for
samples to be labeled positive. As shown in Fig. 6(b), if
we raise the threshold, more samples will be classified as
Cls2 (minority class). But at the same time, more samples
from Cls1 (majority class) are mistakenly classified as Cls2.
Consequently, the recall of Cls2 increases at the expense of
precision.

The effects of both strategies are proved in Section III.C.

III. EXPERIMENT

In this section, we describe the details of two experiments
that involve a logic test chip fabricated during technology
development, and a second chip fabricated during high-volume
production.

A. Setup

Two types of industrial chips (Chip 1 and Chip 2) are used
to demonstrate the efficacy of using learned models to predict
diagnosis information. Characteristics of the two chips are
listed in Table II. Chip 1 is fabricated in a 28nm process, and

TABLE IV
PREDICTION RESULTS FOR CHIP 1.

serves as a test chip for yield ramping. Chip 2 is fabricated in a
90nm mature process at high-volume. A substantial number of
fail logs from both chips are obtained from industrial partners
and each fail log is diagnosed using a commercial diagnosis
tool.

For both examples, half of the data samples are used as
training data and the remaining are used for test. Various
ML algorithms are used in the training for each of the three
classifiers, namely, C1 for predicting diagnosis success, C2
for predicting failure type (i.e., logic vs. chain failure) and
C3 for predicting runtime. For all three classifiers, a RF has
better performances than other algorithms for all the evaluation
metrics, thus only the results of RF are presented. To deal with
imbalanced data, we assign a balanced weight to each class,
which is inversely proportional to the counts of samples in
that class. The probability threshold for dividing two classes
is set as the default value (0.5) for C1 and C3. For C2, we
set the threshold a little bit higher (0.6) to make the recall of
chain failure as close as to the flush-test result for comparison
purposes.

B. Chip 1
Table IV-1 shows the prediction results of C1. Chip 1

is a test chip fabricated in an immature process with many
unknowns that lead to complex failures. As a result, diagnosis
fails to report any defect candidates for 2,283 out of 4,235 fail
logs, which exceeds more than 50% of all the available logs.
From Table IV-1, it is observed that the precision and recall for
both classes range from 87% to 94% and the AUC is as high
as 0.96. This means C1 can effectively predict whether the
diagnosis of a certain fail log tends to terminate with failure
(i.e., no defect candidates).

The performance of C2 is given in Table IV-2. The ratio of
scan-chain failure to all the samples is quite low (5%), which
results in significant data imbalance. However, C2 achieves
high precision and recall for both classes. The near perfect

7



TABLE V
PREDICTION RESULTS FOR CHIP 2.

AUC also indicates the excellent classification capability of
C2. The results also show that ML provides a more accurate
prediction of diagnosed scan-chain failure than solely using
flush test. In Table III, we show the diagnostic results of
fail logs that fail the flush test. For Chip 1, all 230 fail logs
diagnosed as chain failures are picked out by the flush test,
indicating a 100% recall. However, 44 fail logs are diagnosed
as logic-failure and 1,035 unsuccessfully diagnosed fail logs
are also included, resulting in a low precision of 17.6%.

For runtime classification, 300 seconds is the threshold
delineating long and short diagnostic execution/runtime. More
than 80% of the samples have a short runtime. As shown
in Table IV-3, C3 achieves a very high AUC of 0.98 and
good precision and recall for both classes, except the precision
of the minority class is slightly deteriorated due to the class
imbalance.

C. Chip 2

Chip 2 is an actual product chip manufactured in high-
volume, with an imbalanced-data problem much more severe
than Chip 1. Because the manufacturing process and design
are both more mature, it is less likely that a failing chip
exhibits faulty behavior that leads to diagnosis failure. This is
evidenced by the fact that only 281 out of 9301 (3%) fail logs
results in a reporting of zero defects, i.e., diagnosis failure.
In addition, only 112 chips are diagnosed to have scan-chain
failures.

The prediction results of the three classifiers for Chip 2 are
listed in Table V. As described in Section II.D, it is difficult
to obtain both high precision and recall for the minority
class, as evidenced in Table V-1 and V-2. However, AUC
values of these two classifiers are very high at 0.96 and
1.00, respectively. The prediction of runtime is however quite
accurate and has an AUC value of 0.99. Similar to Chip 1,
the results in Table III show that flush test has a low precision

TABLE VI
THE PREDICTED AND REAL COUNTS OF EIGHT DIFFERENT LABELS FOR

CHIP 1 AND CHIP 2.

Cnt p: the predicted count; Cnt r: real count.
D, S, T: labels predicted by the three classifiers.
D = 0 (1): diagnosis fails (succeeds);
S = 0 (1): indicates (does not indicate) the existence of scan-chain defect;
T = 0 (1): the runtime is short (long).

Figure 7. The confusion matrices change with (a) different weight ratios for
the two classes and (b) different classification thresholds. The results are from
diagnosis success prediction of Chip 2. Label 0 means failure and Label 1
means success.

(70%) despite a 100% recall. ML, however, achieves a higher
precision (77%) and an equal 100% recall.

As described in Section II.D, when dealing with imbalanced
data, there are two ways to trade off between precision and
recall of the minority class. The first strategy is to adjust the
weight of the minority class, and the second one is to change
the threshold of the classifier. Both methods are used to predict
the diagnosis success of Chip 2. Fig. 7(a) shows two confusion
matrices using different weights. Compared to the case where
weight ratio is simply 1:1, the classifier tends to predict more
points as label 0 when the weight of the minority class is
increased 100×. The recall of the minority class increases
while the precision decreases. The effect of adjusting threshold
is shown in Fig. 7(b). In this case, setting a lower threshold
tends to predict more samples as label 1, thus the recall of class
labeled 0 becomes lower but the precision becomes higher.
Raising the threshold has the opposite effect.

D. Additional Observations

After obtaining the predicted results for all the testing
samples, each fail log will have 8 possible outcomes of labels.

8



TABLE VII
TOP 5 RANKED FEATURES OF THE THREE CLASSIFIERS TRAINED ON CHIP 1 AND CHIP 2 DATA

Rank Diagnosis success Failure type Runtime
Chip 1 Chip 2 Chip 1 Chip 2 Chip 1 Chip 2

1 1. num fail pattern 6. mean fo 1. num fail pattern 30. fail flush test 24. pattern single sc 1 .num fail pattern
2 3. num uniq fo 16. mean fo 1 30. fail flush test 3. num uniq fo 29. diff max output sc 25. pattern multi sc
3 25. pattern multi sc 5. min fo 11. mean fo 0 4. fo only 1 2. num fo 28. max output sc
4 26. mean pattern sc 21. fail pattern 0 6. mean fo 19. fo only 1 1. num fail pattern 26. mean pattern sc
5 6. mean fo 11. mean fo 0 9. max fo 0 6. mean fo 17. num fail sc 2. num fo

Figure 8. For the three classifiers, the change in precision, recall and AUC with respect to different training sizes are shown in (a) the result of Chip 1, and
(b) the result of Chip 2. 20% of all the available samples are used as test set to calculate these metrics, while the size of training set varies from 10% ∼ 100%
of the remaining samples.

Table VI lists the predicted and real count, together with
meaning of the 8 outcomes. Depending on the particular needs
and resources within a particular manufacturing environment,
some outcomes may be more advantageous than others. For
example, the two rows shaded in dark blue (rows 5 and 7)
correspond to cases where diagnosis succeeds and runtime is
short. These two outcomes are likely the most desired since
meaningful results can be obtained quickly. On the other hand,
for cases predicted with conflicts (rows 1 and 2) and other
cases predicted to fail (rows 3 and 4), these fail logs can
be altogether skipped or scheduled to run last if resources
are available. If the samples in the blue rows (rows 5-8) are
not sufficient for yield learning, then the samples in rows
2 and 4 with short runtime can be diagnosed. Overall, the
characterization results in Table VI aid the organization and
scheduling of the diagnosis to achieve the most efficiency.

In addition to the good prediction performance shown in

Tables IV and V, another benefit of a RF is that it provides
feature importance. The top five important features for the
six classifiers (three classifiers for each chip) are listed in
Table VII. One can observe, despite some overlap, that the
top-ranked features of the two chips are quite different. The
differences are attributed to the fabrication technology and the
makeup of the two chips. This result likely demonstrates there
are no universal rules that can easily predict diagnosis success,
failure type and runtime for all chips, thus validating the need
to develop separate classifiers for each case by learning from
the data. On the other hand, feature no. 30, which indicates
whether the chip fails the flush test, has a very high rank in
predicting failure type for both chips, which is consistent with
our intuition.

Finally, we also conduct experiments to determine how
many training samples are needed for good prediction results.
We set 20% of the data as test set, and vary the training set size

9



from 10% ∼ 100% of the remaining samples. For the same
training size, we randomly select training samples and repeat
the training and prediction process ten times to average out
random fluctuation. The trends of AUC, precision and recall
of Chip 1 are shown in Fig. 8(a). It can be observed that
the curves stabilize for training sets of 2,000 (59% of all the
training samples) or larger. Thus, 2,000 training samples are
sufficient for producing satisfying results.

More than half of survey respondents indicate that more
than a thousand fail logs are diagnosed per week. Therefore,
preparing a training dataset of the required size should not take
much longer than a week or so. If the chip being diagnosed
is large and only 100 can be diagnosed per week, it takes 20
weeks to collect the proper amount of training data, but recall
can be compromised somewhat to reduce data preparation
time. It should be also noted that as production proceeds, and
more labeled data is generated due to completed diagnoses,
re-training can take place using the larger data set.

Similar results for Chip 2 are given in Fig. 8(b). Because
the issue of imbalanced data is more severe for classifiers 1
and 2, the precision and recall of the minority class is always
low. However, most curves stabilize for training sample sizes
of 4,000 (57% of all the training samples) or larger. Again, if
requirements are not too strict early on, then 2,000 samples is
sufficient. It can be also observed that when the two classes
are imbalanced (for failure type prediction), as the number of
samples decreases, the precision of the minority class increases
and the recall decreases. One possible reason is that, when the
training size decreases, fewer samples of the minority class
occur at the decision boundary while the majority class still
has sufficient samples to guard the boundary. As a result, the
boundary tends to retreat to the minority side, resulting in a
lower recall but higher precision. One may also notice that for
failure type and runtime, the prediction performance does not
change much with more training data. One possible reason is
that the performance becomes saturated (i.e., all the metrics
except for one reaches 100%) with very few samples so the
trained RF model seldom changes even with more training
data.

IV. CONCLUSION

In this work, a methodology is developed to provide a
comprehensive preview of diagnostic outcomes beforehand.
The predicted information includes three main aspects: diag-
nosis success, failure type and runtime. With such information,
diagnosis resources can be prioritized in a more reasonable
and effective way. Experiments show that the methodology
can provide accurate prediction results (0.9+ precision, recall,
F1-score and 0.96+ AUC) when the classification classes
are balanced. Even when the classes are not balanced, our
methodology still achieves satisfactory results and the users
can effectively control the trade-off between the precision and
recall for the minority class.

This work demonstrates that there is learnable correlation
between fail-log data and the diagnostic information. Our fu-
ture work will further exploit such correlation and extend both
the feature space and prediction object space. One example is

to predict diagnostic resolution with features extracted from
test patterns.

REFERENCES

[1] K. Stanley, “High-accuracy flush-and-scan software diagnostic,” IEEE
Design & Test of Computers, vol. 18, no. 6, pp. 56–62, 2001.

[2] F. Yang et al., “Detection of internal stuck-open faults in scan chains,”
in International Test Conference, 2008, pp. 1–10.

[3] D. Adolfsson et al., “On scan chain diagnosis for intermittent faults,”
in 2009 Asian Test Symposium, 2009, pp. 47–54.

[4] Y. Huang et al., “Diagnose compound scan chain and system logic
defects,” in International Test Conference, 2007, pp. 1–10.

[5] J. E. Nelson, W. C. Tam, and R. D. Blanton, “Automatic Classification
of Bridge Defects,” in International Test Conference, 2010, pp. 1–10.

[6] H. Wang et al., “Test-data Volume Optimization for Diagnosis,” in
Design Automation Conference, 2012, pp. 567–572.

[7] Y. Xue et al., “PADRE: Physically-Aware Diagnostic Resolution En-
hancement,” in International Test Conference, 2013, pp. 1–10.

[8] Y. Xue, X. Li, and R. D. Blanton, “Improving Diagnostic Resolution of
Failing ICs through Learning,” Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2016.

[9] C. Lim et al., “Diagnostic Resolution Improvement through Learning-
Guided Physical Failure Analysis,” in International Test Conference,
2016, pp. 1–10.

[10] R. D. Blanton et al., “DREAMS: DFM Rule Evaluation using Manufac-
tured Silicon,” in International Conference on Computer-Aided Design,
2013, pp. 99–106.

[11] R. D. Blanton et al., “DFM Evaluation Using IC Diagnosis Data,”
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 3, pp. 463–474, 2017.

[12] W. C. Tam, O. Poku, and R. D. Blanton, “Systematic Defect Iden-
tification through Layout Snippet Clustering,” in International Test
Conference, 2010, pp. 1–10.

[13] W. C. Tam and R. D. Blanton, “LASIC: Layout Analysis for Systematic
IC-Defect Identification Using Clustering,” Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 8, pp.
1278–1290, 2015.

[14] L. R. Gómez and H.-J. Wunderlich, “A Neural-Network-Based Fault
Classifier,” in Asian Test Symposium, 2016, pp. 144–149.

[15] Y. Huang et al., “Scan Chain Diagnosis Based on Unsupervised Machine
Learning,” in Asian Test Symposium, 2017, pp. 225–230.

[16] L. M. Huisman, M. Kassab, and L. Pastel, “Data Mining Integrated
Circuit Fails with Fail Commonalities,” in International Test Conference,
2004, pp. 661–668.

[17] Y. R. Ng et al., “Scan shift debug using LVI phase mapping,” in
International Symposium for Testing and Failure Analysis, 2013, p. 322.

[18] I. H. Witten et al., Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2016.

[19] Wikipedia, “No free lunch in search and optimization,”
(https://en.m.wikipedia.org/wiki/No free lunch in search and optimization).

[20] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[21] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm
for Optimal Margin Classifiers,” in The fifth annual workshop on
Computational learning theory, 1992, pp. 144–152.

[22] L. Breiman, “Random Forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[23] L. Breiman, Classification and Regression Trees. Routledge, 2017.
[24] Wikipedia, “Biasvariance tradeoff,” (https://en.wikipedia.org/wiki/Bias-

variance tradeoff).
[25] Wikipedia, “Cross validation,” (https://https://en.wikipedia.org/wiki/Cross-

validation (statistics)).
[26] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable Selection using

Random Forests,” Pattern Recognition Letters, vol. 31, no. 14, pp. 2225–
2236, 2010.

[27] B. Gregorutti, B. Michel, and P. Saint-Pierre, “Correlation and variable
importance in random forests,” Statistics and Computing, vol. 27, no. 3,
pp. 659–678, 2017.

[28] T. Fawcett, “ROC graphs: Notes and Practical Considerations for Re-
searchers,” Machine learning, vol. 31, no. 1, pp. 1–38, 2004.

[29] N. V. Chawla et al., “SMOTE: Synthetic Minority Over-sampling
Technique,” Journal of artificial intelligence research, vol. 16, pp. 321–
357, 2002.

10


