Multiple-Defect Diagnosis for Logic
Characterization Vehicles

Ben Niewenhuis, Soumya Mittal, and R. D. (Shawn) Blanton
Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213
https://www.ece.cmu.edu/~actl/

Abstract— Previous work on the Carnegie Mellon Logic Char-
acterization Vehicle (CM-LCV) has emphasized the diagnosability
properties of a specific class of regular circuits called functional
unit block arrays (FUB arrays). This paper describes a multiple-
defect, two-level diagnosis procedure that leverages these unique
properties of the FUB array to significantly improve diagnosis. This
custom diagnosis procedure is implemented and evaluated against
commercial diagnosis using a simulated fault-injection experiment
involving pairs of injected faults. Custom diagnosis is accurate in
98.2% of the simulations with resolution of at most five for 94.1%
of the simulations, improving upon the commercial results of 70.7%
accurate and 85.0% with the same level of resolution.

I. INTRODUCTION

The semiconductor manufacturing industry utilizes a wide
variety of test structures to monitor the development of new
fabrication processes. For digital circuits, these test structures
range from the very simple, such as via arrays and comb
drives meant to estimate layer defectivity, to the very complex,
such as SRAMs and product-like test chips (PLTCs) which
are meant to catch the complex, systematic defects that occur
in flagship designs. A PLTC is typically a logic circuit that
exhibits some of the features and functionality of commercial
designs. Previous work has culminated in a new type of PLTC,
called the Carnegie Mellon Logic Characterization Vehicle
(CM-LCV) [1][2], which has improved testability and diag-
nosability compared to conventional PLTCs. Improvements
in testability, which is the ease with which defects can be
detected, have been demonstrated in [3]. Improvements in
diagnosability, or the ease with which defects can be distin-
guished, have been demonstrated in [4]. An unexplored aspect
of diagnosability is how well multiple defects can be isolated
and characterized. This paper describes a two-level multiple-
defect diagnosis procedure for the CM-LCYV, and evaluates its
efficacy using an experiment involving failures caused by two
simultaneous defects.

The remainder of the paper is organized as follows: Sec-
tion provides background on the CM-LCV. Section [III
discusses how the properties of the CM-LCV can be exploited
to gain more insight concerning multiple-defect localization.
Section details a custom, two-level diagnosis procedure
for the CM-LCV that leverages these properties. Section
describes the diagnosis experiments used to evaluate the
custom diagnosis procedure, while Section draws some
conclusions.

II. BACKGROUND

The CM-LCV improves on the conventional PLTC by im-
plementing an innovative functionality. The motivating insight
behind this approach is that the manufacturing process is
sensitive only to the physical features of a design. Although
the functionality (logic) and the physical features (layout) are
correlated, it is in general possible to implement an arbitrary
logic function using many different layouts. Thus the CM-
LCV uses a functionality that is designed to be highly testable
and diagnosable and implements this functionality with a
layout that best approximates the desired characteristics. For
example, a CM-LCV layout may be designed to mimic a
desired standard-cell usage distribution [5], or a product layout
may be rerouted to form a CM-LCV [6]. Previous research
sought to discover an optimal functionality for these purposes,
and resulted in a two-dimensional array of functional unit
blocks (FUBs) (e.g. Fig. [T) with the following properties:

« Regularity - A set of FUBs with regular connections can be
designed to be C-testable [7]], a property which provides strong
guarantees about the test-set size and fault coverage over the
entire array, regardless of its size.

o Two-dimensions - Arranging FUBs in a two-dimensional array
with vertical and horizontal connections enables error propaga-
tion in two directions, allowing for better localization of defects
within the array.

« VH-bijective FUBs - A VH-bijective function [1] is a bijective
boolean function with two sets of inputs (vertical and horizon-
tal) and two corresponding sets of outputs. Additionally, the
function is constrained such that any value change on exactly
one of the sets of inputs must result in a change in the value on
both sets of outputs. Requiring that the FUB function be VH-
bijective guarantees both vertical and horizontal propagation of
errors and simplifies test-set construction.

A CM-LCYV is thus formally defined as a collection of one
or more FUB arrays along with the necessary test access mech-
anisms (e.g., DFT, BiST, etc.). However, it is the FUB array
that determines all of the properties of interest in the current
work. Fig. [I| is an example diagram that demonstrates how
errors propagate through the FUB array. Inputs to the array
are applied on the top and left edges, and values propagate
“downstream” (i.e., down and to the right) through each of
the FUBs to the array outputs on the right and bottom edges.
Assume the FUB instance in the array of Fig.[T[jmarked with an
“x” is defective, and produces an erroneous value (represented
by the dark shading) for some test pattern at its horizontal
output. All FUBs in the same row as the defective FUB

[Vertical Inputs]

)
)

Horizontal Inputs
Horizontal Outputs

[Vertical Outputs]

Fig. 1. VH-bijectivity demonstrated in the presence of a defective FUB in a
two-dimensional array. Note that signal propagation moves left to right, top
to bottom. Guaranteed error propagation is represented by the darkly shaded
connections, while unknown error propagation is represented by the lightly
shaded connections.

(marked with an “H”) fall under the VH-bijective constraint:
a difference in value only present at a horizontal input will
propagate to both outputs. Furthermore, all FUBs in the first
downstream column (marked with a “V”) also fall under the
VH-bijective constraint: a difference in value that appears
only at a vertical input will propagate to both outputs. The
remaining downstream FUBs may experience errors on both
inputs; because they are bijective the error will propagate to at
least one of the outputs, but this case is not covered by VH-
bijectivity and thus the error propagation cannot be predicted
(represented by the light shading) without knowledge of the
test pattern and error values. Based on this analysis, a useful
property emerges for the FUB array: given a single defective
FUB, the first-row and first-column errors observed along the
output edges of the array closely approximate the location
of the defective FUB. This property is key to the custom
diagnosis described in this paper, and will be discussed in
greater detail in the following sections.
III. ERROR ANALYSIS

This section further describes the FUB array behavior
relevant to the objectives of this paper. Specifically, Section
[T-A] elaborates on how VH-bijectivity can be used to localize
a single defective FUB in a FUB array. Section [[II-B]examines
how the inverse of a VH-bijective function can be used to
improve defective FUB localization. Section [II-C| extends
these concepts to arrays with multiple defective FUBs.

A. Forward Bound

As noted at the end of Section [[} the location of the
intersection of the errors observed on the array outputs for a
failing pattern is closely related to the location(s) of defective
FUBs in the array. Assuming there is only one defective FUB,
Fig. 2] describes the three cases that can occur:

1) The defective FUB is horizontally adjacent to the error inter-

section (Fig. 24).
2) The defective FUB is vertically adjacent to the error intersec-

tion (Fig. [2B).
3) The defective FUB is at the error intersection (Fig. .
The array location derived from the errors observed at the
array outputs is referred to as the forward error intersection.
If only one defective FUB is present in the array, it must

(b)
Fig. 2. The three cases that exist for the relationship between the location

of a single defective FUB (represented by the “x”) and the location of the
intersection of the errors observed on the array edges (represented by the “o0”).

fall into one of the three cases observed in Fig. [2} these three
implicated FUB locations are referred to as the forward bound.
Calculation of the forward bound is thus a very simple method
that can be applied to any failing pattern to localize defects
down to three candidate FUBs in a FUB array.

B. Backward Bound

One property of bijective functions is that they are “re-
versible”, that is, an inverse function is guaranteed to exist that
maps the outputs of the bijective function to its inputs. This
inverse function is also guaranteed to be bijective, and it can be
easily proven that the inverse of a VH-bijective function is also
VH-bijective. These properties allow for a failing test pattern
and its response to be simulated backwards through the FUB
array. Backward simulation of a test pattern uses the observed
response as the array input and uses the inverse FUB function
to calculate the internal (fault-free) FUB array values and the
array output. The internal FUB array values produced by this
backward simulation will be accurate until a defective FUB is
reached, at which point differences will emerge between the
backward simulation and the actual FUB array values. Because
the inverse FUB function is VH-bijective, these differences
will propagate all the way to the FUB array inputs. Thus, the
differences between the FUB array input values obtained from
the backward simulation and the applied test pattern can be
used to generate a backward bound with the same properties
as the forward bound.

This point is both subtle and powerful. Every failing test
pattern and its observed response can be simulated both for-
wards and backwards, resulting in two bounds on the location
of defective FUBs in the array. Fig. 3] is an example of how
these bounds can be compared to localize a single defective
FUB with even greater accuracy. In this example, the original
test pattern and observed response can be used to construct the
forward error intersection as shown in Fig. [3al At this point
the forward bound consists of three FUBs: the FUB at the
forward error intersection (marked with the larger “o”) and
its upstream horizontal and vertical neighbors (marked with
the smaller “0”). Performing the backward simulation results
in the backward error intersection as shown in Fig. b The
backward bound also consists of three FUBs: the FUB at the
backward error intersection (marked with the larger “[J”") and
its downstream horizontal and vertical neighbors (marked with
the smaller “[]7”). Intersecting these two bounds results in only
two possible locations for the defective FUB. In this way, the

(b)

Fig. 3. (a) Forward and (b) backward bounds can be used together to localize
a single defective FUB in a FUB array with greater accuracy. In this example
only two FUBs (the defective FUB marked with the “Xx” and its horizontal
neighbor) are implicated by both the forward and backward bounds.

backward bound improves the resolution from three to two
candidate FUBs.
C. Multiple Defects

It is necessary to examine how multiple defects can affect
the FUB array. There are two cases to consider: (i) multiple
defects in a single FUB, and (ii) multiple defects in multiple
FUBs. For the first case, the previous discussion on the forward
and reverse bounds remain valid. For the second case, the
bounds remain useful. For a failing test pattern for an array
with N defective FUBs, 1 to N FUBs may be active, where
each active defective FUB produces an erroneous FUB output
due to defect activation. For these cases, the bounds can be
used to differentiate between one active defective FUB and
multiple active defective FUBs. Fig. [is an example of two
different failing patterns for an array with two defective FUBs,
each marked “x”. In Fig.4a] only one defective FUB is active,
resulting in error intersections that are adjacent in the array. In
contrast, Fig. [4D] illustrates a test pattern with both defective
FUBs active, resulting in bounds that correctly and accurately
implicate two non-overlapping regions of the array, a result
that can only occur when multiple defective FUBs are active.

It is possible however that the forward and backward bounds
are incorrect due to error masking. Error masking in the
presence of multiple defective FUBs can be mitigated by
increasing the test set size, that is, a larger test set reduces the
likelihood of multiple active FUBs that produce error masking.
However, a larger test set has less impact when adjacent FUBs
are defective. Section[V]explores these issues with a large fault
injection experiment.

IV. Two-LEVEL CUSTOM DIAGNOSIS

The FUB-array properties discussed in Section [III| can be
exploited to create a custom, two-level diagnosis. Fig. [3]
illustrates the two diagnosis levels. In the first level (Fig.
[5a)), diagnosis performed at the array level results in a list of
defective FUBs with a characterization of each FUB’s precise
faulty behavior (e.g., a truth table for each defective FUB). In
the second level (Fig. [5b), each defective FUB is diagnosed
to derive the defect-level candidates. Both the array and FUB
levels of this diagnosis procedure are described in greater
detail in the remainder of this section.

(®)

Fig. 4. Demonstration of the forward and backward error intersections
(marked “o” and “0J”, respectively) of two different failing test patterns for
an array with two defective FUBs (marked “X”). The two examples shown
represent (a) a test pattern with only one defective FUB active, and (b) a test
pattern with both defective FUBs active.

Defective
0-1/3
[3-5/0

Gate
Open
Bridge

il Defective
7-1/4

(@ (b)

Fig. 5. Two-level diagnosis consists of (a) an array level where the array
behavior is mapped to individual defective FUBs, followed by (b) a FUB
level where each defective FUB behavior is analyzed to derive the defect
candidates.

A. Array Diagnosis

Array level diagnosis relies on the forward and backward
bounds described in Section [[Mll Recall that the bounds are
determined for a given test pattern by simulating a model of
the FUB array (which can be either defect-free or a model
that captures some or all characteristics of the defective array)
in both the forward and backward directions, and then com-
paring the simulation results with the applied test pattern and
observed response. The relationship between the two bounds
is used to classify a test pattern into one of five categories:

1) Match - There is no difference between the behavior of the
array model and the observed array response.

2) Single Detect - The intersection of the forward and backward
bounds results in exactly one FUB. It is highly likely that
unexplained behavior at the identified FUB is the source of
the difference between the array model and the observed array
response.

3) Probable Single Detect - The intersection of the forward and
backward bounds results in exactly two FUBs. It is highly
likely that unexplained behavior at one of those two FUBs is
the source of the difference between the array model and the
observed array response.

4) Multiple Detect - The intersection of the forward and back-
ward bounds is empty, and the forward error intersection is
upstream of the backward error intersection. The conclusion
is that more than one FUB must be exhibiting unexplained
behavior for this test pattern.

5) Inconsistent - Any other relationship between the forward
and backward bounds is classified as inconsistent, indicating
that the array model is incompatible with the observed array
response. An example of this would be an empty bounds

array_diagnosis (T, R, M)
// T List of tests
// R List of array responses
// M Defect-free array model
begin
final_candidates = NULL // list of final diagnosis candidates
n =1 // Number of simultaneous defective FUBs
for each (t, r) in T, R
init_class(t) = classify_pattern(t, r, M)
while (final_candidates is empty) // outer diagnosis loop
S = all sets of n FUBs implicated by pattern classification
for each set of suspect FUBs s in S
DM = copy of defect-free array model M
mark FUBs in s as defective in DM
current_class = copy of init_class
while (True) // inner diagnosis loop
// Update array model with observed defective behavior
if ("Single Detect" in current_class
select t where current_class(t) == "Single Detect"
update DM with behavior observed in t
else if ("Probable Single Detect" in current_class)
select t where current_class(t) == "Probable Single Detect")
update DM with behavior observed in t
else if ("Multiple Detect" in current_class)
select t where current_class(t) == "Multiple Detect")
update DM with behavior observed in t
endif
for each (t, r) in T, R
updated_class (t) = classify_pattern(t, r, DM)
if (updated_class is all "Match")
add DM to final candidates
break
else if (compare (current_class, updated_class) indicates error
break // give up on current defective array model
endif
current_class = updated_class
end while
// Try again with more defective locations if no final candidates
n = n+l
end while
return final_candidates
end

Fig. 6. Pseudocode for custom array diagnosis.

intersection with the forward error intersection downstream of
the backward error intersection.

Pseudocode for the full array-level diagnosis is presented in
Fig. [6] The first step is to classify all of the test patterns using
a defect-free model of the FUB array. These classifications are
used to identify likely locations of defective FUBs in the array.
The inner diagnosis loop of the algorithm begins by modifying
an array model with defect(s), DM, based on the behavior
observed in one of the failing test patterns. The modified model
is then used to reclassify all of the test patterns. If the defective
array model perfectly matches the observed behavior, then it
is added to the final list of diagnosis candidates. Otherwise,
the changes in test-pattern classification due to the modified
model are analyzed; test patterns that change from ‘“Single
Detect” to “Match”, for example, indicate the defective array
model is accurately reflecting the observed behavior. However,
other changes in classification, for example from “Match” to
“Multiple Detect”, indicate that an incorrect modification has
been made to the array model; if any such change occurs,
the array model is discarded. Initially, the diagnosis procedure
tries to find exactly one defective FUB that can replicate all
of the observed behavior of the failing FUB array; if this
fails, the array model is modified to include larger numbers
of defective FUBs until either diagnosis is successful or some
other stopping criterion (not shown in pseudocode) is reached.

B. FUB Diagnosis

The result of the array-level diagnosis described in Section

is a list of (potentially) defective FUB locations and

their corresponding defective behavior in the form of a truth
table for each FUB. FUB-level diagnosis maps these defective
FUB behaviors to the same defect-level candidates that state-
of-the-art diagnosis tools produce. Two general techniques can
be used to accomplishing this mapping:

o Cause-Effect - The most straightforward approach for FUB-
level diagnosis is to create a fault dictionary for each FUB in
the array. The defective FUB behaviors produced by array-level
diagnosis can then be referenced against the individual FUB
dictionaries to derive the final defect candidates. The traditional
downsides to fault dictionaries, namely their storage overhead
and computational cost, are mitigated by the small size of the
individual FUBs and the minimal number of tests for each FUB.

o Effect-Cause - The second approach is to use an effect-cause
analysis on each implicated FUB. The defective FUB behaviors
produced by array-level diagnosis can be interpreted as input
and output values for each individual FUB netlist, which can
then be processed by a diagnosis procedure to determine the
final defect candidates. The small size of the individual FUBs
is again useful in that it allows for the employment of more
sophisticated approaches without significant runtime overhead,
resulting in improved diagnosis outcomes.

V. EXPERIMENT

This section describes the implementation and evaluation of
the multiple-defect diagnosis procedure presented in this paper.
Specifically, Section covers the implementation details of
the custom diagnosis. Section describes the setup for the
simulated fault injection and diagnosis experiment employed
to evaluate the proposed custom diagnosis. Finally, Section
presents the results of the experiment.

A. Implementation

A program written using the Python language implements
the array-level diagnosis. Fault dictionaries based on the input
pattern (IP) fault model [8]] are used to handle FUB-level
diagnosis. The IP fault model is a functional fault model that
allows one or more rows of the truth table of a circuit module
(e.g., a standard cell, a FUB, etc.) to change. IP faults can
be divided into either single or multiple; a single IP fault
is defined as a change in the output(s) of exactly one truth-
table row. For example, a two-input NAND that produces a 0
instead of a 1 only when an input pattern of 00 is applied is
modeled by a single IP fault. Conversely, a multiple IP fault
changes the output(s) of more than one truth-table row. The
fault dictionaries used for FUB-level diagnosis are created for
all single and multiple IP faults applied to the standard cells
within each FUB in the array.

B. Experiment Setup

To verify the advantages of custom diagnosis, a simulated
fault-injection and diagnosis experiment is performed. This
experiment utilizes a CM-LCV design created for verifying
a commercial 7nm standard-cell library. The LCV contains
8,308 standard cells, organized into 144 individual FUBs that
are arranged into a 12 x 12 FUB array, where each FUB
implements the same 6-bit VH-bijective functionﬂ A test set

'Ideally the size of the FUB array should be such that the expected
number of defective FUBs does not exceed the diagnosis capabilities. Given
a defectivity (per unit area, per standard cell, etc.), standard techniques can
be used to determine an appropriate FUB array size.

consisting of 512 test patterns with 100% fault efficiency for
multiple models (stuck-at, standard-cell-level IP, FUB-level
IP, and 3-detect [9]]) is constructed for this FUB array. Two
faults are simultaneously injected into this array and simulated
to create a virtual fail log for diagnosis. Injected faults are
randomly-selected single IP faults applied to the standard cells
in the design. A total of 5,397 virtual fail logs are generated
and diagnosed using custom and commercial diagnosis. Two
filters are applied to the commercial diagnosis results: first,
bridge-type defect candidates are removed, leaving only open,
stuck-at, and standard-cell defect candidates. This filtering
ensures that the commercial diagnosis tool is effectively diag-
nosing to the same types of faults used to create the virtual fail
logs. Second, only the top-scoring candidates are kept for each
suspected defect in order to improve the diagnostic resolution
without significantly compromising accuracy.
C. Results

Before presenting the results of the simulated fault-injection
experiment, there are two points worth mentioning. First, it is
helpful to examine what an ideal diagnosis result would be
in this context. Diagnosis is evaluated based on two criteria:
resolution, which is defined as the number of defect candidates
reported, and accuracy, which is defined as whether those
defect candidates subsume the actual defect(s). Because two
faults are injected into the array for each virtual fail log,
an ideal diagnosis result should have exactly two defect
candidates, with each defect candidate corresponding to one
of the injected faults. A resolution lower than two cannot be
perfectly accurate for both injected faults; a resolution greater
than two indicates a loss of precision.

Second, it should be noted that the location of the injected
faults can have an effect on the custom diagnosis. Two cases
in particular deserve special consideration: when both faults
are injected into the same FUB, and when the two faults
are injected into adjacent FUBs. Of the 5,396 fault injections
performed, 145 fell into one of these two cases. These fault
injections have been filtered out and will be addressed at the
end of this section. This leaves a total of 5,251 virtual fail
logs where the injected faults are in non-adjacent FUBs.

Fig. [7] is a histogram of the diagnostic resolution for the
commercial and custom diagnosis procedures. Note that the
vertical axis is logarithmic to better represent the range of
the two distributions. Commercial diagnosis has a minimum
diagnostic resolution of 1, a maximum of 43, and an average of
3.50. Custom diagnosis has a minimum diagnostic resolution
of 2, a maximum of 19, and an average of 2.85. It is clear that,
on average, the custom diagnosis improves upon the diagnostic
resolution achieved by commercial diagnosis. Note that this
result in no way diminishes the value of commercial diagnosis.
In particular, the custom diagnosis is developed to leverage the
special properties of the FUB array. While this specialization
results in improved diagnosis outcomes, it is also limited to
the FUB array. The commercial diagnosis, on the other hand,
is capable of handling a wide variety of designs.

Table [l is a comparison of the diagnostic accuracy. Given
that the faults are injected into individual standard cells in the

10* -

I custom
10 B commercial
(]
2
(_‘g’ 10
5
s 10
P4
10°

0 5 10

15 20 25 30 35 40 45
Diagnostic resolution

Fig. 7. Diagnostic resolution for both commercial and custom diagnosis (note
that the vertical axis is logarithmic).

TABLE 1
ACCURACY COMPARISON FOR COMMERCIAL AND CUSTOM DIAGNOSIS

Custom Commercial
Accuracy Count | Fraction | Avg. res. Count | Fraction Avg. res.
100% 5,251 1.000 2.85 3,766 0.717 3.97
50% 0 0.000 NA 1054 0.201 2.38
0% 0 0.000 NA 431 0.082 2.04

array, a defect candidate is defined to be accurate if it includes
(1) the standard cell used for injection, or (ii) a net that is
connected to the standard cell. Diagnostic accuracy can thus be
either 100% (defect candidates include the two injected sites),
50% (defect candidates include one of the two injected sites),
or 0% (defect candidates include neither injected site) for
each fault-injection simulation. Table [I] indicates that custom
diagnosis achieves ideal accuracy (i.e., 100% for all 5,251
fail logs), a nearly 30% improvement over state-of-the-art
commercial diagnosis.

The comparisons presented thus far are summaries over all
fail logs. Fig. [§] compares the diagnostic outcomes for each
fail log individually. Each plot in Fig. [§] sorts the fail logs
from the minimum to the maximum commercial diagnosis
resolution. In particular, Fig. [8a only contains fail logs where
the commercial diagnosis is 100% accurate, while Figures
[8b] and [8¢] correspond to 50% and 0% commercial diagnosis
accuracy, respectively. Fig. [8a] clearly shows that for every fail
log but one (99.97%) where the commercial accuracy is 100%,
custom diagnosis either matches or improves the diagnostic
resolution without compromising the 100% accuracy. Figures
[8b] and show that, while the commercial diagnosis can
improve upon the custom diagnosis resolution for some cases,
it can only do so by compromising diagnosis accuracy.

Finally, the 145 filtered fail logs are examined. Table
summarizes the commercial and custom diagnosis results for
the 26 fail logs generated with both injected faults in the
same FUB. The custom diagnosis is disadvantaged in this case
because the fault dictionaries used for FUB-level diagnosis

c 457 100% Commercial accuracy
o 40 —
5 35 -
@ 30 —
© 25 1 < custom
-% 20 commercial
Q 15 —
c
> 10
a S5
0 — T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500 4000
(@)
c 47 50% Commercial accuracy
9
E|
@]
(%]
e
L
@
o
c
(@]
8
a

0 200 400 600 800 1000 1200
(b)
c 7 0% Commercial accuracy
o
5 20
3
o 15 —
L
® 10
o
>
g 5
D ———
0 | | | | | | | | |

0 50 100 150 200 250 300 350 400 450

Fail log index
©

Fig. 8. Diagnostic resolution comparison for the custom and commercial
diagnosis for each virtual fail log. The virtual fail logs have been separated
into three populations based on commercial diagnosis accuracy: (a) fail logs
with 100% commercial accuracy, (b) fail logs with 50% commercial accuracy,
and (c) fail logs with 0% commercial accuracy.

TABLE II
ACCURACY COMPARISON FOR COMMERCIAL AND CUSTOM DIAGNOSIS
FOR TWO FAULT INJECTIONS INTO A SINGLE FUB

Custom Commercial
Accuracy Count | Fraction Avg. res. Count | Fraction | Avg. res.
100% 0 0.000 NA 2 0.077 3.50
50% 1 0.038 1 3 0.115 1.33
0% 25 0.962 0 21 0.808 1.14

assume a single faulty standard cell. The array-level diagnosis,
on the other hand, handles single defective FUBs without diffi-
culty regardless of how many faulty standard cells it contains.
Either expanding the fault dictionaries or using an effect-cause
approach for FUB-level diagnosis would significantly improve
custom diagnosis performance for these cases.

Table [[T]] summarizes the commercial and custom diagnosis

results for the remaining 119 fail logs involving faults injected
into adjacent FUBs. These cases are more difficult for custom
diagnosis due to the high likelihood of significant defect
interaction, including, in the worst case, full-error masking.
However, custom diagnosis still delivers perfect accuracy with
good resolution for 38.7% of these fail logs. Furthermore,
when custom diagnosis fails to report any candidates the
commercial diagnosis can still be used as a fall-back method.

TABLE III
ACCURACY COMPARISON FOR COMMERCIAL AND CUSTOM DIAGNOSIS
FOR ADJACENT-FUB FAULT INJECTIONS

Custom Commercial
Accuracy Count | Fraction | Avg. res. Count Fraction Avg. res.
100% 46 0.387 2.80 49 0.412 3.61
50% 1 0.008 1.00 39 0.328 2.05
0% 72 0.605 0.00 31 0.261 1.42

VI. CONCLUSIONS
This work proposes a custom, two-level diagnosis procedure
for multiple defects that takes advantage of the unique proper-
ties of the FUB array used in the CM-LCV. A fault injection
experiment with two simultaneous faults is used to compare
custom and commercial multi-defect diagnosis performance.

Results indicate that custom diagnosis achieves perfect accu-

racy for 98.2% of the fail logs and diagnostic resolution of

five or less for 94.1% of the fail logs, improving upon the
commercial diagnosis results that are 70.7% perfectly accurate,
and 85.0% with resolution of five or less. Future work will
focus on improvements to the diagnosis procedure that allow
it to better handle difficult cases, particularly adjacent defective

FUBs. Finally, custom diagnosis will soon be applied to real

silicon data from state-of-the-art fabrication facilities produced

in ongoing collaboration with industry partners.
REFERENCES

[1] R. D. Blanton, B. Niewenhuis, and C. Taylor, “Logic characterization
vehicle design for maximal information extraction for yield learning,”
International Test Conference, pp. 1-10, Oct 2014.

[2] B. Niewenhuis and R. D. Blanton, “Efficient built-in self test of regular
logic characterization vehicles,” VLSI Test Symposium, pp. 1-6, April
2015.

[3] Z. Liu, B. Niewenhuis, S. Mittal, and R. D. Blanton, “Achieving 100%

cell-aware coverage by design,” Design, Automation Test in Europe

Conference, pp. 109-114, March 2016.

S. Mittal, Z. Liu, B. Niewenhuis, and R. D. Blanton, “Test chip design for

optimal cell-aware diagnosis,” International Test Conference, Nov 2016.

[5S] R. D. Blanton, B. Niewenhuis, and Z. D. Liu, “Design reflection for
optimal test-chip implementation,” International Test Conference, pp. 1—
10, Oct 2015.

[6] P. Fynan, Z. Liu, B. Niewenhuis, S. Mittal, M. Strojwas, and R. D.
Blanton, “Logic characterization vehicle design reflection via layout
rewiring,” International Test Conference, Nov 2016.

[7]1 A. D. Friedman, “Easily testable iterative systems,” IEEE Transactions
on Computers, vol. C-22, no. 12, pp. 1061-1064, Dec 1973.

[8] R. D. Blanton and J. P. Hayes, “Properties of the input pattern fault
model,” International Conference on Computer Design, pp. 372-380, Oct
1997.

[9] S.C.Ma, P. Franco, and E. J. McCluskey, “An experimental chip to evalu-
ate test techniques experiment results,” International Test Conference, pp.
663-672, Oct 1995.

[4

[inr}

	Introduction
	Background
	Error Analysis
	Forward Bound
	Backward Bound
	Multiple Defects

	Two-Level Custom Diagnosis
	Array Diagnosis
	FUB Diagnosis

	Experiment
	Implementation
	Experiment Setup
	Results

	Conclusions
	References

