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Abstract—The goal of diagnosis is to identify defect locations
and subsequently, identify the root cause so as to minimize (and
ideally eliminate) the need for physical failure analysis. With
advanced technology nodes, there has been an increasing number
of front-end (i.e., within a standard cell) defects. Conventional
diagnosis approaches typically fail to localize such defects. In
addition, circuit-level noise can change the tester response in
an unexpected way, and can decrease the quality of diagnosis.
This work describes a noise-resistant approach called NOIDA
(NOise-resistant Intra-cell DiAgnosis) for effectively diagnosing
cell-level defects based on the analysis of the intra-cell physical
neighborhoods surrounding likely defect locations. Defect behav-
ior is derived based on the neighborhood, instead of relying on a
specific fault model. Experiments demonstrate the effectiveness
of NOIDA using a library of standard cells. The results show
that for over 16,000 static and sequence-dependent defects, the
method achieves an average resolution improvement of 12.1%
over prior work with a small accuracy loss (specifically, 1.6%).
Additionally, NOIDA is found to be more robust to noise in
the tester response. Specifically, in the presence of noisy tester
response, NOIDA attains an accuracy of 97.6% with an average
resolution improvement of 48.6% over prior work.

I. INTRODUCTION

Diagnosis is a software-based process for determining
defect locations within a failing circuit and sometimes, in
addition, can characterize the nature of the defects residing
in those locations. Suspect defect locations, often called can-
didates1, are determined by comparing the observed circuit
response with the expected, defect-free response. The outcome
of diagnosis is sometimes used to aid physical failure analysis
(PFA) in order to identify the root cause of the failure. The
quality of diagnosis, which is typically defined by resolution
(the number of locations reported) and accuracy (i.e., are the
reported locations correlated to actual defect locations), is a
major factor in determining the success rate of PFA.

Besides guiding PFA, the information obtained from volume
diagnosis aids the understanding of failure mechanisms, which
consequently facilitates yield learning. Moreover, a variety of
volume diagnosis approaches aim at using the diagnoses of a
statistically-significant number of failing chips to determine if
there are any systematic defects [1], [2]. Diagnosis results can
also be used to estimate defect distribution for a population of
failing chips [3], and grade the effectiveness of fault models
[4].

1A candidate can be (a) an interconnect or a cell in the logic-level representa-
tion of the circuit, or (b) an intra-cell net in the transistor-level representation
of the circuit. Additional information such as its likely behavior and physical
location is also sometimes reported depending on the particular diagnosis
approach employed.

Numerous techniques have been proposed over the years
to improve the diagnosis of a failed circuit. Approaches such
as [5]–[11] use a logic-level description of the circuit to find
a possible cause and location of failure. To improve defect
localization, techniques have been developed that incorporate
design layout information [12]–[18]. All of these techniques
focus on diagnosing defects outside the cell and report either
an interconnect, a standard-cell pin or the cell itself as a
possible candidate. These techniques therefore collectively
perform back-end defect diagnosis, which means these ap-
proaches cannot locate defects inside a cell. It has been shown
in [19] however that the root cause of a significant number
of manufacturing defects lies within a cell for advanced
nanometer technologies (90nm and below). Because one goal
of diagnosis is to eliminate the need for PFA, knowledge of
the exact defect location is of utmost importance. Complex
standard cells such as full adders, multipliers and scan flip
flops contain a large number of transistors that makes PFA
challenging [20]. Pinpointing each defect location inside a
cell will decrease the physical area that must be examined for
failure analysis, resulting in more efficient and cost-effective
PFA [19]–[22]. For example, if all the candidates are found
to be located within the polysilicon layer, the failing die can
be de-layered up to the polysilicon layer and all the higher
layers can be ignored during PFA. Moreover, some failure
mechanisms including poly-contact shorts, poly-contact opens,
and poly-active shorts can only exist within a cell and would
not be found by a back-end diagnosis technique. Additionally,
diagnoses of intra-cell defects can be correlated to identify
yield-limiting layout features within a cell.

A diagnosis approach typically correlates observed defect
behavior with one or more fault models to find candidates.
Many fault models have been created over the years to capture
the variety of observed defect behaviors. While fault models
such as single stuck-line, wired logic bridge and transition
have been commonly used for diagnosis, their ability to
precisely capture the defect behavior is decreasing [23]. Fault
models that consider layout information have been shown to
be more effective in modeling defects [19], [24]. However,
as technology advances, new materials and fabrication steps
are employed, which results in new defect types and failure
mechanisms. New failure mechanisms (e.g., fin-related defects
in FinFET-based circuits [25]) can create misbehaviors that are
not sufficiently captured by existing fault models [26]. Thus,
the unpredictability of defects necessitates the need for a more
generalized approach to defect diagnosis.



Even if fault models accurately captured the typical be-
haviors of the targeted defects, circuit-level noise can cause
deviations between the predicted behavior and the behavior
observed on the tester. Various sources of noise exist in
digital circuits that include process variation, cross-talk signal
noise, power supply noise, and substrate-coupling noise [27].
Deviations between the observed and the predicted behavior
can also result from inaccurate SPICE models used for de-
fect extraction, and the transistor-level simulation employed
for formulating fault models. Depending on the amount of
deviation, a weak logic value at a cell output, due to an intra-
cell defect, can be interpreted as a logic-1 or a logic-0 by
a receiver cell (depending on its switching threshold, which
too is affected by noise), and can result in a tester response
that is not predicted by the corresponding fault. Thus, circuit-
level noise and the resulting ambiguity in signal logic values
warrant the need for a noise-resistant diagnosis approach.

This work describes a novel methodology to diagnose front-
end defects that we term NOIDA (NOise-resistant Intra-cell
DiAgnosis). Here, the defects are assumed to be localized,
i.e., the behavior of a defect is influenced by the circuitry
within some radius r surrounding it. Hence, NOIDA derives
the defect behavior by analyzing the nets surrounding its
location, instead of using a particular fault model. The output
of NOIDA is a set of candidates, where each candidate is a
tuple consisting of its physical location (x-y coordinate and
the physical layer) and its likely behavior (and consequently
its defect type). Several defect injection experiments are per-
formed using a 45nm standard-cell library [28] to evaluate
NOIDA when noise is introduced to the tester response.
Results demonstrate better accuracy and significant resolution
improvement for intra-cell defects when compared to [19].

The rest of the paper is organized as follows. Section
II provides a brief background on front-end diagnosis and
motivates NOIDA. This section also describes NOIDA in
detail. Experiment results are presented in Section III. The
final section concludes the paper.

II. DIAGNOSIS METHODOLOGY

Many approaches have been put forward over the years to
diagnose intra-cell defects. Work in [29] assumes a defect
model for defects within the transistor-level description of
a cell and maps these defects to logic-level defects using
complex transformation rules. Transformation is applied to
cells that adhere to the following criteria: the stuck-at fault
simulation response at the output of a cell should match
the observed circuit response. Logic-level diagnosis tools can
then be used on the modified netlist to find the defective
cells, and in turn the intra-cell defects. One main drawback
of using this approach is that diagnostic accuracy largely
depends on the defect models and the transformation rules.
Another disadvantage is that a different model is required for
each defect type, which means unknown defect types may go
undiagnosed.

In [22], possible defective cell locations (i.e., cell candi-
dates) are identified based on the realistic assumption that

the excitation of a cell-internal defect is highly correlated
to the input logic values applied to a cell. Logic values at
the inputs of each cell candidate are collected for Tester-
Fail-Simulation-Fail (TFSF) patterns, that is, patterns that fail
on the tester and propagate the error effects from the defect
location to the circuit outputs; and Tester-Pass-Simulation-Fail
(TPSF) patterns, that is, patterns that pass on the tester but
propagate the error effects from the defect location to the
circuit outputs. Such input-value combinations will henceforth
be referred to as cell-level failing and passing patterns. Cells
with inconsistent input conditions, i.e., input conditions that
appear in both cell-level passing and failing patterns, are
discarded from further analysis. This form of consistency
checking is a special case of the approach described in [18].
For the remaining consistent cells, the input conditions are
matched with a fault dictionary. The fault dictionary is created
by performing a switch-level simulation of various intra-cell
defects.

In [19]–[21], [30], [31], a fault dictionary is constructed
from extracting realistic defects from physical layout and
transistor-level simulation. This has the advantage of gener-
ating more accurate responses, though the simulation time
may be a limiting factor. Moreover, if the defect extraction or
simulation steps are not accurate, then diagnosis will produce
inaccurate results.

Methods described in [19]–[22], [30], [31] generate a
fault dictionary by extracting intra-cell defects using various
techniques. On the other hand, an effect-cause approach is
described in [32], where critical path tracing [33] is utilized
to trace back from the output of a failing cell to cell inputs. The
main drawback of this work is that physical layout information
is not considered for diagnosis. For example, bridge defects
implicated by this methodology may not be very likely due to
lack of proximity.

Prior work on front-end diagnosis discussed up to this point
suffers from one major disadvantage – potentially inaccu-
rate defect modeling. NOIDA circumvents this problem by
avoiding the use of a specific fault model. Instead, it derives
the defect behavior by analyzing the logic activity of the
nets surrounding the likely defect location. Here, a defect is
assumed to be localized and controlled by the circuitry in close
proximity. This assumption holds true for a variety of defects
such as bridge, open and transistor defects. The nets near the
candidate are collectively referred to as its neighborhood; the
logic values applied to the nets in the neighborhood form a
neighborhood state. Changes in neighborhood state over time
can also be important for sequence- and timing-dependent
defects.

Fig. 1 illustrates a typical software diagnosis framework.
Given a test response, the first step is to find candidates at the
logic level. The result of this logic-level analysis is an initial
set of interconnect and cell candidates. Next, the interconnect
candidates are examined using back-end diagnosis techniques
like [18], [34]. In parallel, each cell candidate identified is
further investigated via front-end diagnosis approaches [19]–
[22], [29]–[32] to pinpoint defect locations inside a cell.
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Fig. 1. Overview of a generic diagnosis framework.

Fig. 2. A schematic view of an inverter cell with parasitics extracted.
Parasitics affecting power rails are not shown for clarity.

The resulting set of interconnect and intra-cell candidates are
then merged together to constitute a final set of candidates.
Minimum set covers are selected from this set and ranked
using a scoring model. This paper, in particular, is focused on
describing front-end diagnosis. Each step involved in the flow
is described next:

1) Intra-cell node identification: A transistor-level descrip-
tion of a cell (such as its physical layout, SPICE netlist, etc.)
is used to identify intra-cell nodes. A SPICE netlist with
parasitics extracted is used here. The inverter schematic is
used to illustrate node identification in Fig. 2. The parasitic
resistances are denoted using ‘r’ and the coupling capacitances
using ‘c’. There are ten internal nodes for this cell, namely,
{A, A:1, A:2, Z, M0:g, M0:d, M0:s, M1:g, M1:d, M1:s}.

2) Fault simulation: Each intra-cell node is faulted at the
opposite value of the expected value for the cell-level failing
and passing patterns2. This is achieved by adding a near-zero
resistor between each node and VDD (or GND, depending
on the fault value) in the SPICE netlist. The altered SPICE
netlist is then simulated with an analog simulator for the cell-
level failing and passing patterns. Each simulation response
is digitized using the following criteria: the logic value at
the cell output is deemed a logic-1 (logic-0) if the output
voltage is more (less) than half of the supply voltage. This
logic threshold value depends on the process technology and
can be specified by the user. The cell-level passing (failing)

2The cell-level failing and passing patterns can be obtained via any logic-level
diagnosis technique. However, an exhaustive two-pattern test set is used in
Section III because the experiments performed in this work involve diagnosis
of individual cells and not a circuit of interconnected cells.

patterns for which a faulted node produces and propagates an
error to the cell output are the cell-level TPSF (TFSF) patterns
for the faulted node. Each faulted node with at least one cell-
level TFSF pattern is deemed an initial diagnosis candidate.

3) Neighborhood identification: Neighborhood of each node
is found from the extracted SPICE netlist of the cell. Neighbors
of a node constitute all nodes that are coupled to it by
capacitors. This is a reasonable way to identify neighbors and
adheres to the localization assumption. For instance, in Fig.
2, three coupling capacitors, c2, c4 and c8, are associated
with node A:1 and hence the neighbors of A:1 include {Z,
M1:s, M0:s}. If parasitic extraction is not possible, then the
neighbors can simply be found by identifying the internal
nodes that are in close physical proximity to the candidate.

4) Neighborhood state derivation: Analog voltage values at
each of the internal nodes are stored during fault simulation in
step 2. Each value is then converted into its logic equivalent
by using the same logic threshold value mentioned in step
2. For static defects, the neighborhood state of a candidate
is the set of logical values established in its neighborhood
for the pattern applied. For sequence-dependent defects, the
neighborhood state tracks the logical values for two or more
patterns.

5) Consistency check: The neighborhood state of each intra-
cell candidate is analyzed for cell-level TPSF and TFSF
patterns. If the neighborhood state of a candidate is the same
for any pair of cell-level TPSF and TFSF patterns, then the
candidate is inconsistent and is removed from the candidate
set. It should be noted that the amount of inconsistency can
be modulated for candidate elimination. Finally, minimum set
covers of the consistent intra-cell candidates are selected to
jointly explain the failures observed at the cell output.

III. EXPERIMENTS

This section presents the experiment details of evaluating
NOIDA on 79 standard cells within the 45nm standard-cell
library of [28].

A population of defective cells is created by injecting cell
defects (one at a time) into the layout of each cell. The defects
injected include opens, bridges (feedback and non-feedback),
stuck-open and stuck-closed transistors with resistance values
that range from 1Ω to 20kΩ for bridges, and from 1GΩ to
1kΩ for opens. For each defective cell layout, a corresponding
transistor-level netlist is extracted. Because the behavior of
the defect is unknown, i.e., whether it is static or sequence-
dependent, analog simulation is performed on each altered
netlist using an exhaustive two-pattern test set. A defect is



Fig. 3. Distribution of static and sequence-dependent defects for a 45nm standard-cell library [28].

considered detected if the voltage at the cell output deviates
from its expected, defect-free value of VDD or GND by more
than 50%. Also, and importantly, patterns that detect the defect
are deemed cell-level failing patterns, while the remaining
patterns are treated as cell-level passing patterns.

Each defect simulation response is analyzed to determine if
it exhibits static or sequence-dependent behavior. A sequence-
dependent defect requires a sequence of patterns (two patterns
in this case) for detection. Detection of a static defect is
independent of the first pattern applied for all two-pattern
combinations. In other words, a static defect is detected by
a single pattern.

Fig. 3 shows the number of static and sequence-dependent
defects for each standard cell in the library. A total of 16,037
defects are injected and simulated, out of which 7,110 (44.3%)
are static while 8,927 (55.7%) are sequence-dependent. Out
of 7,110 static defects, 449 (6.3%) are open defects, 3,290
(46.3%) are bridge defects, and 3,371 (47.4%) are transistor
defects. Similarly, out of 8,927 sequence-dependent defects,
3,711 (41.6%) are open defects, 1,424 (15.9%) are bridge
defects, and 3,792 (42.5%) are transistor defects. It is also
observed that most of the open defects (89.2%) require a
sequence of patterns for detection, and a majority of bridge
defects (69.8%) are static.

Each intra-cell defect is diagnosed using NOIDA and [19].
NOIDA returns a set of minimum set covers (step 5 of
NOIDA), where each set cover jointly produces a response
that exactly matches the observed response at the cell output.
Using [19] for diagnosis means that all modeled faults that
have a simulation response that matches the observed response
are reported as diagnosis candidates. Both diagnosis method-
ologies are evaluated on two criteria, namely, resolution and
accuracy. For NOIDA, resolution is defined as the number of
unique intra-cell nodes present in the minimum set covers.
For [19], resolution is calculated by counting the number of
unique intra-cell nodes corresponding to the faults returned as
candidates. For both methodologies, a defect is considered to
be accurately diagnosed if the candidates returned include at
least one of the intra-cell nodes used for defect injection.

Table 1 shows the number of static and sequence-dependent

TABLE 1
DIAGNOSTIC ACCURACY ACHIEVED BY NOIDA AND [19].

Diagnosis approach Static Sequence-dependent
NOIDA 7090 (99.7%) 8692 (97.4%)
[19] 7110 (100.0%) 8927 (100.0%)

Fig. 4. Cumulative distribution of the number of candidates reported by
NOIDA and [19]. Plots marked with “◦” and “4” correspond to the resolution
obtained by NOIDA for static and sequence-dependent defects, respectively.
Plots marked with “*” and “O” correspond to the resolution obtained by [19]
for static and sequence-dependent defects, respectively.

defects accurately diagnosed by NOIDA and [19]. It indicates
that while [19] attains perfect accuracy, NOIDA achieves near
perfect accuracy for static defects (99.7%) and an accuracy of
97.4% for sequence-dependent defects.

Table 2 categorizes the accuracy attained by NOIDA by
defect type for static and sequence-dependent defects. It is
observed that 54 transistor defects and 201 open defects
are inaccurately diagnosed by NOIDA. These defects are
investigated further to determine the reason for inaccuracy. It is
discovered that the analog voltage values at the cell output and
some of the internal cell nodes lie close to the logic threshold
value (i.e., ± 10%) for some patterns. One of the reasons
for intermediate voltage at a node is the time at which the
voltage of each node is sampled. This observation has two
consequences. First, a failing pattern can be interpreted as
a passing pattern which can eliminate the correct candidate.
Second, voltage (that is close to logic threshold) at an internal
node can be inaccurately converted to its logic equivalent,
which can change a neighborhood state and in turn, make the
correct candidate inconsistent.

Fig. 4 shows the diagnostic resolution achieved by NOIDA

TABLE 2
DIAGNOSTIC ACCURACY ACHIEVED BY NOIDA FOR STATIC AND

SEQUENCE-DEPENDENT DEFECTS.

Static Sequence-dependent
Defect type Accurate Inaccurate Accurate Inaccurate
Bridge 3290 (100.0%) 0 1424 (100.0%) 0
Open 449 (100.0%) 0 3510 (94.6%) 201
Transistor 3351 (99.4%) 20 3758 (99.1%) 34



Fig. 5. Cumulative resolution distribution when (a) one (1FP-to-1PP), (b) two (2FP-to-2PP) and (c) three (3FP-to-3PP) cell-level failing patterns are randomly
changed to passing patterns. Plot lines marked with “◦” and “4” correspond to the resolution obtained by NOIDA for static and sequence-dependent defects,
respectively. Plot lines marked with “*” and “O” correspond to the resolution obtained by [19] for static and sequence-dependent defects, respectively.

and compares it with the resolution achieved by [19]. Fig. 4
contains four plots. Each plot is sorted by the number of candi-
dates. For a plot point x-y, the x-value denotes the number of
candidates, and the y-value denotes the percentage of defects y
with resolution less than or equal to x. Plots marked with “◦”
and “4” represent the resolution obtained by NOIDA for static
and sequence-dependent defects, respectively. Plots marked
with “*” and “O” is the resolution obtained from the faults
derived in [19], for static and sequence-dependent defects,
respectively. It is observed that NOIDA returns 12.1% fewer
candidates compared to [19]. Moreover, the average resolution
obtained from NOIDA is 9.2 candidates per defect, showing
an improvement of 1.3 candidates per defect over [19].

However, the resolution improvement achieved by NOIDA
is associated with some accuracy loss. When [19] is used for
diagnosis, it achieves perfect accuracy. But its important to
note here that each defect injected is identical to an instance
of the faults extracted in [19] and therefore, it is not at all
surprising that the accuracy of [19] is 100.0%.

Another point is that diagnosis here is performed on individ-
ual cells, that is, not on a circuit that contains interconnected
cells. For circuit-level diagnosis, it is possible that a cell-level
failing (passing) pattern can become a circuit-level passing
(failing) pattern due to noise. This is because voltage deviation
due to noise can change how a driven cell interprets the
value. In NOIDA (and other front-end diagnosis approaches
[19]–[21], [30], [31]), voltage deviation can also result from
inaccurate SPICE models used during defect extraction and
analog fault simulation. Thus, a weak logic-1 at a cell output
can actually be or interpreted as a weak logic-0 and vice
versa, which in turn can transform a cell-level failing pattern
to a circuit-level passing pattern. However, a large deviation
is required for a strong logic-0 (logic-1) to become a weak
logic-1 (logic-0). Thus, for fault models that equate passing
with strong logic values, it is less likely for a cell-level passing
pattern to become a circuit-level failing pattern. Therefore, to
evaluate both NOIDA and [19], “realistic” defect responses
are created by randomly changing cell-level failing patterns
to passing patterns. Specifically, three new responses are
created for each original defect response by changing one,
two and three cell-level failing patterns to passing patterns.
(Corresponding defect injection experiments will henceforth
be referred to as 1FP-to-1PP, 2FP-to-2PP and 3FP-to-3PP.) So
as not to modify the behavior of a defect entirely, a defect

response is altered only when the decrease in the number of
failing patterns is less than or equal to 50%. For instance,
defects with less than six failing patterns are not considered
for 3FP-to-3PP. Compared to 16,037 defects considered in the
first set of experiments (i.e., when original defect responses
are used), the number of defects reduces to 10,891 for 1FP-
to-1PP, 8,712 for 2FP-to-2PP, and 5,229 for 3FP-to-3PP.

Table 3 shows the percentage of defects accurately diag-
nosed by NOIDA and [19] when one, two and three failing
patterns are changed to passing patterns. The results indicate
that the accuracy of [19] remains at 100.0% while the accuracy
of NOIDA slightly increases for 1FP-to-1PP. This is because
102 out of 255 defects inaccurately diagnosed earlier had only
one failing pattern and are thus not considered for 1FP-to-1PP.
For 2FP-to-2PP and 3FP-to-3PP, it is noticed that the accuracy
of [19] drops to 96.5% and 94.2%, respectively while NOIDA
performs comparatively better, attaining an accuracy of 97.9%
and 96.3%.

The improvement in resolution however is more significant.
Specifically, Fig. 5 highlights the improvement in diagnostic
resolution from NOIDA. Fig. 5 shows three parts, one each
corresponding to 1FP-to-1PP, 2FP-to-2PP and 3FP-to-3PP.
Each part contains four plots. Plot lines marked with “◦”
and “4” show the cumulative diagnostic resolution distribu-
tion of static and sequence-dependent defects, respectively,
reported by NOIDA. Plot lines marked with “*” and “O”
represent the cumulative resolution distribution of static and
sequence-dependent defects, respectively, achieved by [19]. It
is observed that NOIDA returns 46.3%, 43.6% and 55.8%
fewer candidates compared to [19] for 1FP-to-1PP, 2FP-to-
2PP and 3FP-to-3PP, respectively. Moreover, NOIDA shows
an improvement of 7.5, 7.3 and 9.5 candidates per defect over
[19] for 1FP-to-1PP, 2FP-to-2PP and 3FP-to-3PP, respectively.
In addition, the plots reveal that NOIDA achieves a perfect
resolution for 13.7%, 17.9% and 20.1% of defects for 1FP-to-
1PP, 2FP-to-2PP and 3FP-to-3PP, respectively. On the other

TABLE 3
DIAGNOSTIC ACCURACY FOR NOIDA AND [19] WHEN ONE

(1FP-TO-1PP), TWO (2FP-TO-2PP) AND THREE (3FP-TO-3PP)
CELL-LEVEL FAILING PATTERNS ARE CHANGED TO PASSING PATTERNS.

Diagnosis
approach 1FP-to-1PP 2FP-to-2PP 3FP-to-3PP
NOIDA 98.6% 97.9% 96.3%
[19] 100.0% 96.5% 94.2%



hand, less than 1.0% of defects have a resolution of one when
[19] is used. Thus, NOIDA performs significantly better than
[19] in terms of accuracy and resolution in the presence of
noise.

IV. CONCLUSIONS

This work presents a novel generalized methodology for
front-end defect diagnosis we call NOIDA (NOise-resistant
Intra-cell DiAgnosis). NOIDA consists of finding defect lo-
cations within a cell and deriving defect behavior based on
the nets that surround the suspected defect location, instead
of correlating the observed defect response with a particular
fault model.

Simulation experiments for over 16,000 intra-cell defects
are used to evaluate NOIDA on various standard cells. Results
indicate that the approach achieves a resolution improvement
of 12.1% when compared to [19] with a slight loss in accuracy.
Furthermore, when additional defect injection experiments are
performed by adding noise to the tester response, it is seen that
NOIDA is able to diagnose 97.6% defects accurately compared
to 96.9% by [19]. More importantly, NOIDA performs signif-
icantly better than [19] in terms of resolution. Specifically,
NOIDA returns 48.6% fewer candidates (8.1 fewer candidates
per defect, on average) and achieves a perfect resolution for
17.2% of defects. This reduction in the number of potential
defective locations within a cell while achieving near perfect
accuracy makes PFA efficient and cost-effective, and likely
enhances yield learning significantly.

The experiments presented here include running NOIDA on
combinational standard cells with a single defect injected at
a time. Current work includes running NOIDA on sequential
cells. Future work will be focused on extending this approach
to include diagnosis of multiple defects, and deriving a scoring
model to rank the candidates for further resolution improve-
ment.
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