Test Chip Design for Optimal Cell-Aware
Diagnosability’

Soumya Mittal, Zeye Liu, Ben Niewenhuis and R. D. Shawn Blanton
Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213
http://www.ece.cmu.edu/~actl/

Abstract—Rapid yield learning in a new manufacturing pro-
cess via test chips is greatly enhanced with a “Design for
Diagnosis” methodology. Prior work on logic-based test chip
design demonstrated an implementation flow that ensures 100 %
intra-cell fault coverage using a minimal test set. However,
testability alone does not guarantee good diagnosability. Since
diagnosis is inherently a function of design, it is crucial that
the design flow ensures defect-level diagnosis resolution and
accuracy. This work describes an enhanced implementation
methodology for the Carnegie-Mellon Logic Characterization
Vehicle (CM-LCYV) that ensures optimal cell-aware diagnosability
by design. Experiments comparing intra-cell defect diagnosability
of the CM-LCYV and various benchmark circuits demonstrate the
efficacy.

I. INTRODUCTION

Yield is always low when a new manufacturing process is
introduced. Thus, in order to meet shrinking time-to-market
and time-to-volume demands, the rate of yield ramping must
be rapid. Different strategies are utilized for yield analysis
depending on the maturity of the fabrication process. In-line
inspection, test structures, and memories [1] are mostly
used in the initial phases of yield learning. These structures
however do not mimic all of the layout features inherently
found within actual customer ICs, especially the logic
circuits. Customer or product-like logic-based test chips, also
known as logic characterization vehicles (LCVs) [2], are now
commonly used by integrated device manufacturers, foundries
and design houses. In addition to providing feedback about
the IC manufacturing process, LCVs are designed and
fabricated with more general goals such as evaluation of
place-and-route and identification of troublesome layout
patterns. However, the primary objective of an LCV remains
to collect manufacturing feedback about a new technology
node. Current approaches for LCV design focus on adapting
existing product designs, resulting in non-optimal testability
and diagnosability. A new type of product-like test chip
called the Carnegie Mellon Logic Characterization Vehicle
(CM-LCV) [3] optimizes test and diagnosis of test chips for
yield improvement through careful design. The CM-LCV is a
two-dimensional array of functional unit blocks (FUBs). The
FUB array is designed to have guaranteed error propagation
and constant testability [4], a property that ensures a fixed-size
test set. Work in [5] describes a circular BIST architecture

*This work is sponsored by the National Science Foundation under contract
no. 1527606.

for the CM-LCV that achieves 100% fault coverage using
the generalized input-pattern (IP) fault model [6] with a
corresponding 86.9% test-time reduction. Other work in [7]
describes a design flow that copies the physical characteristics
of an example product into the CM-LCV. Finally, work in
[8] discusses an approach to achieve 100% intra-cell fault
testability while simultaneously ensuring the incorporation of
product design features into the CM-LCV.

Although prior work discusses testability of interconnect
and intra-cell defects of the CM-LCV in detail, diagnosability
of the defects inside the standard cells and within the FUBs
are not explicitly considered. Numerous publications exist in
the literature for improving diagnosability of logic circuits,
and essentially can be divided in two categories. One category
focuses on developing diagnostic ATPG techniques [9]-[11].
These are used to enhance diagnosis resolution by generating
tests that distinguish fault pairs. The other category centers
on using improved diagnosis algorithms [12]-[16]. Other
work (e.g., [17]-[20]) focuses specifically on providing better
accuracy and resolution for cell-internal defects.

Besides better tests and algorithms, diagnosis also
significantly depends on the design itself. “Design for
Diagnosis” methods discussed in [21], [22] are based on the
insertion of observation points but do not fundamentally alter
the design methodology. An approach that creates the design
from “scratch” with optimal defect localization accuracy and
curtails physical failure analysis (PFA) time and effort would
thus be very beneficial for constructing an effective LCV.

Because one of the challenges of fabricating a test
chip on a new technology node is diagnosability [3], a
design-for-diagnosis (DfD) technique is proposed in this
work to overcome the drawbacks previously described. In
this DfD technique, a matrix-based formulation is used to
identify FUB implementations that ensures optimal cell-aware
diagnosability. Several experiments are performed to evaluate
the DfD methodology with results demonstrating significant
diagnosis improvement for intra-cell defects within a FUB
array as compared to benchmark circuits.

Prior work [8] achieved array testability by ensuring
individual FUB testability. That is, optimal array
testability is provably guaranteed through the use of
constant-testability theory [4]. The same is not true
however for diagnosability. In other words, making
defects/faults inside the FUB and gates diagnosable



does not guarantee that those same defects/faults are
diagnosable when the FUB is incorporated into an array
of FUBs. This paper addresses this challenge. Specifically,
(i) the FUB array design flow is modified to ensure
each individual FUB by itself is diagnosable, and (ii)
just as importantly, a method for guaranteeing array
diagnosability is described when constructing a FUB
array from individual diagnosable FUBs.

The rest of the paper is organized as follows. In Section
2, we briefly review relevant papers in logic diagnosis and
define some of the terminology used throughout the paper.
This section also details the need for a DfD methodology
that includes experiments supporting this claim. Section
3 discusses the design flow and the optimization used to
obtain the CM-LCV with improved cell-aware diagnosability.
Experiment results assessing and validating the design flow
are presented in Section 4. The final section concludes the
paper and describes some directions for future work.

II. BACKGROUND

The primary objective of diagnosis is to localize defects
and if possible, identify their root cause. Diagnosis algo-
rithms can be broadly categorized into cause-effect and effect-
cause techniques. Cause-effect based approaches [23] build
a database of simulated faulty behaviors and compare them
with the observed tester responses. The database containing
fault simulation responses is typically referred to as a fault
dictionary. The quality of diagnosis significantly depends on
the fidelity of the fault models used to build the dictionary.
Conversely, effect-cause based approaches [24] analyze the
faulty behavior and deduce one or more defects that ade-
quately explains the observed behavior. A number of diagnosis
algorithms have been described that follow either of these
approaches, or employ a combination of these techniques to
improve the outcome of diagnosis [12]-[16].

Additionally, diagnostic automatic test pattern generation
(DATPG) methods enhance diagnostic resolution and accuracy
by generating dedicated test patterns for distinguishing fault
pairs [9]-[11]. For example, work in [9], [10] generates
diagnostic test patterns to distinguish stuck-at faults while
[11] considers arbitrary fault models derived from initial runs
of diagnosis. However, these approaches can lead to a large
number of test patterns and require significant runtime when
the number of fault pairs is large. In general, the drawback for
DATPG is its computational complexity due to extensive fault
simulation and large test-set size. More importantly however,
and often overlooked, is the fact that some faults are inherently
indistinguishable due to the nature of the design itself.

To further improve diagnostic resolution, various techniques
exist that report candidates at the transistor level instead of the
gate level [17]-[20]. In [17], intra-cell faults are represented
as gate-level faults so that conventional logic-based diagnosis
approaches can be employed. In [18], excitation conditions
are extracted for the cells identified from gate-level diag-
nosis tools and are matched with a fault dictionary created

TABLE 1
AN EXAMPLE ILLUSTRATING THE IP FAULT MODEL FOR A 2-INPUT OR
GATE.
Output Z

Inputs A B Expected Fy F> F3 Fy
00 0 1 0 0 0
01 1 1 0 1 1
10 1 1 1 0 1
11 1 1 1 1 0

from switch-level simulation. Work presented in [19] demon-
strates a methodology for fault characterization of standard-
cell libraries using inductive contamination analysis. In [20],
diagnosis is performed using analog fault models. Specifically,
physical defects are identified from the standard-cell layout
with corresponding fault models that are derived from analog
simulation. Using these methods may not be suitable for
diagnosing test chips since all possible defect mechanisms are
not known a priori for a new fabrication process.

In order to be more general than a cell-aware fault model,
we have adopted the Input Pattern (IP) fault model [6]. The IP
fault model allows a circuit module to change its functionality
arbitrarily, where a module can be arbitrarily defined (e.g., as
a gate or some other sub-circuit). Table 1 illustrates how the IP
fault model is applied to a simple gate. Specifically, it shows
a truth table of an OR gate with inputs A and B, and output
Z. The second column shows the correct function while the
remaining columns capture the effect of the four possible IP
faults. Note that the fault is defined as a change in a single
row of the truth table. For a gate or a cell with n inputs and
m outputs, there are 2"(2" — 1) different IP faults.

The IP fault model when exhaustively applied at the gate-
level is the same as the gate-exhaustive fault model, that
is, all IP faults are dominated by the 22" — 1 functional
faults. Experiments in [25], [26] indicate that gate-exhaustive
tests detect more defective chips than tests derived using
conventional fault models.

To compare the diagnosability of different circuits, we use
the metric defined in [10]. The metric, called Diagnostic
Coverage (DC), is defined as

9

bC = %7

where g is the number of detected fault groups and F'T" is the
total number of faults. Here, a fault group consists of faults
that produce the same output response for a given test set.
These faults cannot be distinguished from each other for the
given test set. Faults in different groups are differentiated from
each other by the test set. Thus, the diagnostic coverage will
be equal to one if every fault produces a unique response,
implying ideal diagnostic resolution for defects that behave
exactly like the faults.

Fig. 1 illustrates that fault coverage does not correlate very
well with diagnosability. Specifically, it shows the distribution
of more than 63,000 unique FUB implementations, and each
plot point (“hexagon”) denotes the number of FUB implemen-
tations with a given fault coverage and diagnosability value.

(2.1)



500
75- 400
300
70-
%]
200 §
S ©
8 65 2
[
2 100 £
O 9
© 60 g
4 -50 pos
< =)
o255 z
a 20 ©
s
50- =
-5

IS
[V
—

55 60 65 70 75 80 85 90
Fault coverage

Figure 1. Plot comparing diagnostic coverage with fault coverage for over
63,000 FUB implementations.

While it is apparent that increasing fault coverage does in
general correlate with increasing diagnostic coverage, there is
still significant variation in diagnostic coverage (roughly +/-
10%) for a given fault coverage. Thus, diagnostic coverage, as
defined in Eq. 2.1, or some similar metric should be explicitly
used to assess design diagnosability.

Because the fault effects of any detectable intra-cell defect
can be captured by one or more IP faults, the IP fault model
is utilized to calculate the diagnostic coverage of different
circuits in order to capture their cell-aware diagnosability.
A commercial standard-cell library is utilized to synthesize
the circuits, and the fault simulator FATSIM [27] is used to
simulate all cell-level IP faults.

Table 2 reports the outcome of this simulation, especially
related to the redundant and missing IP faults. The last three
columns of Table 2 reveal that there exists a number of IP
fault classes [8] that are redundant and missing. An IP fault
class is defined as a tuple consisting of a particular standard
cell and a particular IP fault. An IP fault class is said to be
redundant if the IP fault is redundant for each instance of its
corresponding standard cell within a given design. The fourth
column in Table 2 shows the number of redundant IP fault
classes present in the design. The last two columns give the

TABLE 2
IP FAULT COVERAGE ANALYSIS FOR VARIOUS BENCHMARKS.

No. of re-

dundant
ISCAS89 No. of | No. of re- | IP fault | No. of missing IP
benchmark 1P dundant classes in fault classes
circuit faults IP faults circuit Library LibraryDS
$13207 8980 1354 22 86 1509
s15850 10864 1805 25 89 1515
$35932 23326 2117 1 205 1645
$38417 33770 2502 48 48 1444
$38584 42220 4896 27 27 1454

0 00-10pY
0 l 00-50/1 0/ Q» 1/0 111—)0}—0/1
=
00-1/0
0 1
(a)
0 00-10p5
o—r 0/1 1/0 0/1
: 00-0/1 101-1/0p h»
00-1/0
0 1
(b)

Figure 2. Example illustrating the impact of design on diagnosis. For the
circuit shown in (a), all the IP faults are detected which degrades resolution.
For the slightly modified circuit of (b), fewer IP faults are detected for the
same test pattern, thus improving resolution.

number of missing IP fault classes in the cell library, i.e., the
number of classes corresponding to the logic functions and
gates not included in the design. More specifically, the column
labeled “Library” considers only standard cells with different
logic functions while the column labeled “LibraryDS” also
takes into account the driving strengths and functions of the
standard cells.

For the 154 standard cells in the library, there are 1,692 1P
fault classes, of which 250 are independent of drive strengths.
From Table 2, we notice that a significant percentage of IP
fault classes are missing or redundant for the benchmark
designs analyzed. This is not favorable for yield learning; for
example, a systematic defect in a cell cannot by observed if
all of its IP fault classes are either redundant or missing. An
ideal test chip should include all IP fault classes, and none of
them should be redundant.

As mentioned, diagnosis is either improved (typically) by
using advanced algorithms and/or by using higher quality test
patterns. But as already mentioned, another important factor
that influences diagnosis is the design itself. Attempts have
been made in the direction of “Design for Diagnosis” (e.g.
[21] and [22]) but they are essentially based on the insertion of
observation points instead of the design implementation itself.

The circuit in Fig. 2 illustrates how design can influence
diagnosis. It shows the fault-effect propagation of an IP fault
for the 2-input AND gate. We notice that for the only test
pattern that activates the AND IP fault (00—0/1), the fault
effects (not shown) from the two 2-input NAND gates are
also propagated to the output for circuit of Fig. 2a. However,
this does not occur for the slightly altered circuit of Fig. 2b.
In fact, the NAND IP faults shown are now redundant for
the circuit of Fig. 2b. This example therefore illustrates that
even a slight change in design topology can change both the
diagnostic resolution and fault redundancy.



(a) (b)

Figure 3. Example illustrating how diagnostic coverage decreases when a
FUB is within an array.

One important question that must be addressed is the
relationship between FUB-level resolution and array-level
resolution. Specifically, what can be said about the diagnostic
coverage of a FUB array (DCjyrqy) composed of individual
FUBs (F'By, F'Bo, ..., FB,,), each with a corresponding DC;
(DC1, DCs, ..., DC,). In the ideal situation, where no cell-
level IP fault from any FUB F'B; is equivalent to any other IP
fault from any other FUB F'B; (i # j), the DCyyrqy would be
a simple composition. That is, DCqypay = > 9/ FT;, where
each g; is the number of fault groups for F'B;, and F'T; is the
total number of cell-level IP faults in F'B;. This ideal case is
desirable because it means FUBs can be selected based on their
diagnosability characteristics independent from other FUBs in
the array, regardless of their location.

To illustrate how diagnostic coverage can decrease when
FUBs are arranged in an array, consider the circuits shown
in Fig. 3. Fig. 3a shows a simple 2-input, 2-output FUB.
For an exhaustive set of test patterns, we observe that each
IP fault in the example FUB has a unique fault signature.
This means the FUB exhibits ideal diagnostic resolution in
isolation, that is, when the FUB by itself is viewed as the
circuit under test, diagnostic resolution is ideal. Now, when
this FUB is placed within a 3x3 array, as shown in Fig. 3b,

TABLE 3
COMPARISON OF DIAGNOSTIC RESOLUTION OF THE FUB AND FUB
ARRAY SHOWN IN FIG. 3.

Module-level Array-level
resolution resolution
Fault index IP Fault (Fig. 3a) (Fig. 3b)
Fy NAND2, 00— 1/0 1 1
Fs NAND2, 01—1/0 1 Redundant
F3 NAND2, 10—1/0 1 1
Fy NAND2, 11—0/1 1 4
Fs NOR2, 00—1/0 1 4
Fs NOR2, 01—0/1 1 Redundant
Fr NOR2, 10—0/1 1 1
Fg NOR2, 11—0/1 1 1

Figure 4. Faults within the (z, y)-FUB can only possibly be equivalent to
faults within the driving (north or west) or driven (south or east) neighbors.

and tested with an exhaustive, array-level test set, we observe
that the resolution of some of the IP faults for the highlighted
FUB degrades. Specifically, Table 3 lists the resolution (the
number of candidates reported by diagnosis) of all the FUB
IP faults when isolated, and after being placed within the
array. Two IP faults in the highlighted FUB of Fig. 3, F5
and Fg, become redundant due to the controllability and
observability constraints imposed by the array. Furthermore,
the resolution of two other faults, Fy and F5, degrades due
to fault equivalence among faults within different FUBs in
the array (i.e. inter-FUB fault equivalence). Thus, this simple
example illustrates how diagnosability of FUBs in isolation is
not necessarily maintained when the FUBs are within an array.

Analysis of the fault-detection properties of a two-
dimensional array of VH-bijective! FUBs [3] has revealed
that only neighboring FUBs can possess defects/faults that are
equivalent. This means that a FUB located at position (x,y)
can only have inter-FUB defect/fault equivalencies with the
FUBs located immediately to the north, west, east or south,
as shown in Fig. 4. Moreover, the necessary conditions for two
inter-FUB faults to be equivalent are quite difficult to satisfy.
There are two possible cases that must be examined.

For the first case, assume the (z,y)-FUB of Fig. 4 produces
an error at both the horizontal and vertical outputs. For this
case, it is not at all possible for the driven FUBs (locations
E and S) to possess a defect/fault that would mimic the error
propagation ensured by the function implemented within each
VH-bijective FUB. It is possible however for either of the two
FUBs driving the (z,y)-FUB (locations N and W) to possess
a defect/fault that produces the same array response. These
potentially-equivalent faults in adjacent FUBs can be derived
or proven not to exist for each FUB fault of concern.

For the second case, assume the (x,y)-FUB of Fig. 4
produces an error exclusively at either its horizontal or vertical
output. In this case, it is not possible for the driving FUBs
(locations N and W) to possess an equivalent defect/fault, as
above. However, the driven FUBs (locations E and S) can

'A VH-bijective function ensures propagation of one or more errors present
at either a horizontal or vertical input to at least one vertical and horizontal
output.



Design family

FUB library

Standard-cell library

- B B
=D B
BB B
B> >

-

Logic library

DD D

Logic synthesis

e

User requirements Matrix formulation

-"l e
IP \ . b

FUB analysis Solver

FUB, FUB, - FUB, ﬁ?‘b}:
Cl 35 51 - B It o280,
SSL 99% 200% - 9% J:/".- NS
P 90% 91% - 89% £ R %

FUB Template

Figure 5. The CM-LCV implementation flow.

possess an equivalent defect/fault. Again, these potentially-
equivalent faults in adjacent FUBs can be derived or proven
not to exist for each FUB fault of concern.

In order for an array to have inter-FUB fault equivalencies,
there must exist two neighboring FUBs, each with a fault
signature® that perfectly matches this constructed equivalent
fault for the other. Thus, if an array is restricted to FUBs
with no possible equivalent faults, then inter-FUB fault equiva-
lences cannot exist. Moreover, no inter-FUB fault equivalences
can exist if only one of the equivalent faults (from the driving
or driven FUB) exist since both obviously must be present to
establish the equivalency.

In a preliminary analysis, over eight thousand FUB imple-
mentations are examined, and only 2.6% possessed cell-level
IP faults that meet the necessary conditions for inter-FUB
fault equivalence. Hence, by eliminating these FUB imple-
mentations from the FUB library, it is possible to ensure
ideal diagnostic coverage composition among all of the FUBs
in the library. Thus, focusing on diagnosability of individual
FUBs will ensure that the diagnosability of the FUB array will
coincide with the ideal case described earlier.

IITI. DESIGN FOR DIAGNOSIS

This work builds on the LCV design methodology used
in [8] where only intra-cell testability is considered. Specif-
ically, the methodology in [8] synthesizes a large number of
FUB implementations to guarantee that no IP fault class is
redundant or missing. Moreover, it incorporates the physical
characteristics of a product design into the CM-LCV. Here this

2A fault signature is the simulation response produced by a single FUB
affected by a fault (e.g., an IP fault) when it is exhaustively tested.

design flow is significantly enhanced to guarantee cell-aware
diagnosability through design.

Fig. 5 illustrates the design-for-diagnosis (DfD) method-
ology. The first step creates a library that only contains
logic functions extracted from the standard-cell library. The
cell functions usually come in low power and multiple drive
strength variants; but standard cells with the same function but
different physical layouts are not distinguished in this step of
the flow. The second step is synthesis; this step generates a
large number of FUB implementations using different subsets
of standard-cell functions from the logic library. All of these
FUB implementations taken together form the FUB library.
Each FUB implementation in this library realizes the same
bijective function but utilizes different cells. The third step
characterizes each FUB in the library in the following way:

1) The vector C stores the number of instances of each
library-function type used within the FUB module.
Specifically, each component C[I] € C is equal to the
number of times the cell function [ is instantiated in the
FUB module.

2) The vector R tracks the number of redundant IP faults
for each IP fault class. Specifically, each component
R[(, fx)] € R is equal to the number of redundant IP
faults f; for IP fault k£ and cell function .

3) The vector FC combines vectors C and R resulting in a
measure of IP fault class coverage. Specifically, FC is:

o FC[(, fr)] =1 < C[l] > 0 and C[I] > R[(I,fx)]

o FC[(l, fr)] = 0, otherwise.
This means that an IP fault class for a FUB is
considered covered when at least one IP fault class
for the gate in the FUB is tested.



4) The vector DC represents the diagnostic coverage of
each FUB implementation calculated using Eq. 2.1.
Specifically, each component DC[i] € DC is the diag-
nostic coverage for FUB implementation ¢. The vector
DR is calculated by subtracting DCJ7] of each FUB
implementation from one. Specifically, DR[{] = 1—
DCI[:].

The next step in the flow combines the vector information for
each FUB to form a matrix that is solved using an optimization
solver. The output of the solver is a FUB template, i.e., a
set of FUB implementations from the library that achieves
optimum diagnosis coverage without any redundant or missing
IP fault classes. The optimization performed by the solver can
be expressed as:

DRx

)

Subject to FCx >d
x>0
where d is a matrix that guarantees each IP fault class
is testable, DR and F'C are as defined above, and x is
the solution that represents the set of FUB implementations
identified by the solver, i.e. the FUB template.

The second part of Fig. 5 derives standard-cell demo-
graphics (i.e., cell instance counts) from a design family.
Alternatively, cell demographics can be specified by the user.
In addition to achieving high diagnostic resolution, it is also
important to mimic or reflect the physical characteristics of
a design. In this work, the reflection of standard-cell demo-
graphics is considered a good approximation of the critical
design properties. The following equation optimizes diagnostic
coverage while incorporating cell demographics into the CM-
LCV.

Minimize (

(3.1)

DRx
X
Subject to FCx >T
>0
where b is a matrix that represents the targeted demographics
or user-specified design requirements, 7" is a constraint matrix
that guarantees that a certain number of IP faults for a given
fault class are diagnosable within the FUB template, j is a
tuning parameter, and C, DR, FC and x have the same
meaning as described earlier.

Equation 3.1 attempts to maximize the diagnostic coverage
of the FUB implementations in the resulting FUB template.
In addition to maximizing the diagnosability of the FUB
template, Equation 3.2 also tries to minimize the differences
in standard-cell demographics between the template and the
targeted demographics. The constraints used in both equations
ensure that no IP fault class will be redundant or missing.

) +[1Cz —b]1*)

Minimize (j(

(3.2)

IV. EXPERIMENT

For the experiments described here, the standard-cell library
that is utilized to synthesize different benchmark circuits
in Section 2 is also used here. Following the design flow

90 : .
@ Resolution=1
@® Resolution<?2
Resolution <3
0l (] <

Diagnostic coverage
o -
o o

(8]
o

40}

38703 02 05 06 07 08 09 Lo
Fraction of total faults in a FUB

Figure 6. Distribution of diagnostic coverage for over 63,000 FUB imple-
mentations for each resolution criterion. Each point corresponds to a FUB
with y-axis value being its diagnostic coverage and z-axis value being the
fraction of IP faults having a particular resolution value or range of values
(denoted by different colors).

detailed in Section 3, a FUB library is created that contains
more than 63,000 different FUB implementations of a VH-
bijective function that has a total of six inputs and six outputs,
equally split between the vertical and horizontal ports. The
logic cells used in these FUB implementations are replaced
with corresponding standard-cell functions, with their driving
strengths assigned randomly.

Fig. 6 illustrates how diagnostic coverage correlates with
individual fault resolution within a given FUB implementation.
Each plot point corresponds to a unique FUB implementation
of a FUB function that guarantees optimal testability of a
FUB array, and there are over 63,000 points per color plotted.
Consider the distribution of points shown in blue. For a FUB
located at coordinate z-y in this distribution, the y-value
denotes its diagnostic coverage, and the x-value is the fraction
of IP faults in the FUB with ideal resolution. Similarly, for the
distribution of points shown in red (green), the z-value is the
fraction of faults with resolution less than or equal to two
(three) and the y-value again is the diagnostic coverage. It is
observed that for FUB implementations with high diagnostic
coverage, around 90% of the faults have resolution less than
or equal to three, out of which 70% of faults have ideal
resolution. Thus, selecting implementations with high DC for
realistic and/or comprehensive fault models such as the IP
fault model greatly increases the likelihood of uncovering the
root-cause of failure for a defective FUB.

After characterizing the FUB library and removing those
FUB implementations with potential inter-FUB fault equi-
valencies, Equation 3.1 is solved using the criteria discussed in



TABLE 4
DIAGNOSTIC COVERAGE COMPARISON FOR A FUB TEMPLATE AGAINST
VARIOUS BENCHMARKS USING THE IP AND SSL FAULT MODELS.

No. of miss- Percentage

ing IP fault of redundant
Circuit classes IP DC SSL faults SSL DC
s13207 1509 47.41 15.65 47.04
s15850 1515 57.06 18.08 46.47
$35932 1645 81.45 2.05 75.89
$38417 1444 59.91 21.42 46.31
$38584 1454 69.96 10.12 57.36
Family 982 66.48 11.84 56.95
FUB, 0 72.53 0 83.11

Section 3. The solver, Branch and Reduce Optimization Navi-
gator (BARON) [28], is used to obtain the FUB template. Table
4 shows a detailed comparison of the diagnostic coverage of
the FUB template with full-scan ISCAS89 benchmark circuits
for both the IP and stuck-at (SSL) fault models. The number of
missing IP fault classes and the percentage of redundant SSL
faults are reported in second and fourth columns, respectively.
The diagnostic coverage for both the IP and SSL fault models
are listed in third and fifth columns, respectively. The first
five rows report results of the benchmark circuits, with all five
benchmark circuits evaluated together as a design family in the
sixth row. The last row reports results for the FUB template
(FUBy). It is evident from the table that the FUB template
achieves higher diagnostic coverage than all of the benchmark
circuits except $s35932. However, note that the number of
missing IP fault classes in this benchmark is significant, i.e.,
many standard cells are unused while the FUB template does
not have any missing or redundant IP fault classes. Though
$35932 has better diagnosability than the FUB template for
the IP fault classes it contains, it has a significant number of
missing IP fault classes making it a very poor candidate for a
test chip. Additionally, the FUB delivers better diagnosability
when the SSL fault model is considered.

Besides attaining high diagnosis resolution without any
redundant or missing IP fault classes, incorporating standard-
cell demographics into the CM-LCV FUB array is desirable
[7]. The FUB templates, for both cell reflection and diagnos-

TABLE 5
TRADE-OFF BETWEEN DIAGNOSABILITY AND CELL REFLECTION FOR THE
IP FAULT MODEL.

Cell-
demographics Tuning
Circuit IP DC i tch (%) parameter
FUB;p1 63.11 34.39 7000
FUB; 2 70.61 67.49 100000
TABLE 6

TRADE-OFF BETWEEN DIAGNOSABILITY AND CELL REFLECTION FOR THE
SSL FAULT MODEL.

Cell-

demographics Tuning
Circuit SSL DC i tch (%) parameter
FUBgs11 72.52 33.02 1000
FUBgs12 77.31 44.54 3000

TABLE 7
DIAGNOSTIC COVERAGE COMPARISON FOR A FUB TEMPLATE AGAINST
ISCAS DESIGN FAMILY FOR DIFFERENT FAULT MODELS.

Circuit SSL DC IP DC SLIDER DC

FUB, 83.11 72.53 73.42

ISCAS 56.95 66.48 67.43
TABLE 8

TRADE-OFF BETWEEN DIAGNOSABILITY AND CELL REFLECTION FOR
INTRA-CELL DEFECTS DERIVED USING INDUCTIVE-FAULT ANALYSIS.

Cell-

demographics Tuning
Circuit SLIDER DC i tch (%) parameter
FUBgjider1 65.69 34.53 10000
FUBsiider2 67.89 41.09 100000

ability, resulting from solving Equation 3.2 are tabulated in
Table 5 for the IP fault model, and in Table 6 for the SSL
fault model. The design characteristics of the ISCAS design
family are incorporated into two different FUB templates.
We observe that there is a trade-off between achieving high
diagnostic coverage and low cell-demographics mismatch.
Cell-demographics mismatch is defined as the sum of absolute
differences of the number of logic cells of each function type
between the design and the FUB template, divided by the
total number of cell instances utilized in the design. Higher
diagnosability can be achieved with a larger value for the
scalar multiplier 5 in Equation 3.2, whereas low demographics
mismatch can be reached with a comparatively smaller j
value. The optimal trade-off between these two properties,
i.e. diagnosability and design similarity (as measured by cell-
demographics mismatch) is difficult to predict due to the
complex relationship between the design, the manufacturing
process, and the defect mechanisms.

To further analyze intra-cell diagnosability, SLIDER [29]
is used to extract the most-likely intra-cell defect behaviors.
(SLIDER is a defect simulation framework and is used here
to model realistic intra-cell defects.) Accordingly, only the IP
faults that capture the intra-cell defects identified by SLIDER
are considered. Table 7 compares the diagnostic coverage of
ISCAS designs and the FUB template obtained from solving
Equation 3.1 for different fault models and SLIDER-identified
defects. We observe that the intra-cell diagnosability based on
the SLIDER-identified defects is better than IP fault diagnos-
ability. Furthermore, Table 8 shows the FUB templates for
induced cell-aware defects from the standard-cell layouts when
design reflection is considered and produces similar results. It
is therefore possible to achieve better demographics mismatch
at the cost of diagnostic coverage when also performing
inductive fault analysis.

V. CONCLUSION

In this paper, a Design-for-Diagnosis technique is described
that improves the diagnosability of logic-based test chip while
minimizing the number of redundant and missing IP fault
classes. Specifically, a methodology is developed for the CM-
LCV to ensure optimal cell-aware diagnosability by design.



The experimental results indeed show better diagnosability
for the CM-LCVs produced using this methodology compared
to the benchmark circuits. Moreover, it is shown that the
proposed methodology can optimize the diagnostic reso-
lution while incorporating physical characteristics of a product
design in the CM-LCV and ensuring that all IP fault classes
are tested. Our future work will be focused on improving the
diagnosability of multiple defects and incorporating specific
layout features into the LCV. Finally, we are in the process
of taping-out an LCV in volume with an industrial partner in
7nm technology.

REFERENCES

[1] D.J. Ciplickas, X. Li, and A. J. Strojwas, “Predictive Yield Modeling of
VLSICs,” International Workshop on Statistical Metrology, pp. 28-37,
2000.

[2] C. Hess et al., “Logic Characterization Vehicle to Determine Process
Variation Impact on Yield and Performance of Digital Circuits,” Inter-
national Conference on Microelectronic Test Structures, pp. 189—196,
2002.

[3] R. D. Blanton, B. Niewenhuis, and C. Taylor, “Logic Characterization
Vehicle Design for Maximal Information Extraction for Yield Learning,”
IEEE International Test Conference, Oct. 2014.

[4] A. D. Friedman, “Easily Testable Iterative Systems,” IEEE Transactions
on Computers, vol. C-22, no. 12, pp. 1061-1064, Dec. 1973.

[5] B. Niewenhuis and R. D. Blanton, “Efficient Built-in Self Test of Regular
Logic Characterization Vehicles,” IEEE VLSI Test Symposium, 2015.

[6] R. D. Blanton and J. P. Hayes, “Properties of The Input Pattern Fault
Model,” IEEE International Conference on Computer Design, Oct. 1997.

[71 R. D. Blanton, B. Niewenhuis, and Z. Liu, “Design Reflection for Op-
timal Test-Chip Implementation,” IEEE International Test Conference,
Oct. 2015.

[8] Z. Liu et al, “Achieving 100% Cell-Aware Coverage by Design,”
Design, Automation and Test in Europe, 2016.

[91 A. Veneris et al., “Fault equivalence and diagnostic test generation using

ATPG,” Proceedings of the International Symposium on Circuits and

Systems, pp. 221-224, 2004.

Y. Zhang and V. D. Agrawal, “A Diagnostic Test Generation System,”

IEEE International Test Conference, pp. 1-9, 2010.

N. K. Bhatti and R. D. Blanton, “Diagnostic Test Generation for

Arbitrary Faults,” IEEE International Test Conference, 2006.

S. Venkataraman and S. B. Drummonds, “POIROT: A Logic Fault

Diagnosis Tool and Its Applications,” Proceedings International Test

Conference, pp. 253 — 262, 2000.

L. M. Huisman, “Diagnosing Arbitrary Defects in Logic Designs Using

Single Location at a Time (SLAT),” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 23, no. 1, pp.

91-101, 2004.

R. Desineni, O. Poku, and R. D. Blanton, “A Logic Diagnosis Method-

ology for Improved Localization and Extraction of Accurate Defect

Behavior,” IEEE International Test Conference, pp. 1-10, 2006.

X. Yu and R. D. Blanton, “Improving Diagnosis through Failing Be-

havior Identification,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 31, no. 10, pp. 1614-1625, 2012.

A. Riefert et al., “Improving Diagnosis Resolution of a Fault Detection

Test Set,” VLSI Test Symposium, pp. 1-6, 2015.

X. Fan et al., “Extending Gate-Level Diagnosis Tools to CMOS Intra-

Gate Faults,” Proceedings of IET Computer & Digital Techniques, vol. 1,

no. 6, pp. 685-693, 2007.

E. Amyeen, D. Nayak, and S. Venkataraman, “Improving Precision Us-

ing Mixed-level Fault Diagnosis,” IEEE International Test Conference,

pp. 318-323, 2006.

J. Khare, W. Maly, and N. Tiday, “Fault Characterization of Standard

Cell Libraries Using Inductive Contamination Analysis (ICA),” IEEE

VLSI Test Symposium, pp. 405—413, May 1996.

H. Tang et al., “Diagnosing Cell Internal Defects Using Analog

Simulation-based Fault Models,” Asian Test Symposium, pp. 318-323,

2014.

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

I. Pomeranz, S. Venkataraman, and S. M. Reddy, “Z-DFD: Design-
for-diagnosability based on the concept of Z-detection,” Proceedings
International Test Conference, pp. 489497, 2004.

Z. Li et al., “Efficient Observation-Point Insertion for Diagnosability
Enhancement in Digital Circuits,” IEEE International Test Conference,
Oct. 2015.

J. Richman and K. R. Bowden, “The Modern Fault Dictionary,” Pro-
ceedings International Test Conference, pp. 696-702, 1985.

H. Cox and J. Rajski, “A Method of Fault Analysis for Test Generation
and Fault Diagnosis,” IEEE Transactions on Computer-Aided Design,
1988.

K. Cho, S. Mitra, and E. McCluskey, “Gate Exhaustive Testing,” IEEE
International Test Conference, Nov. 2005.

R. Guo et al., “Evaluation of Test Metrics: Stuck-at, Bridge Coverage
Estimate and Gate Exhaustive,” Proceedings VLSI Test Symposium, pp.
66-71, 2006.

K. N. Dwarakanath and R. D. Blanton, “Universal Fault Simulation
Using Fault Tuples,” Proceedings Design Automation Conference, pp.
786-789, 2000.

Sahinidis, V. Nikolaos, and M. Tawarmalani, “BARON: Global Opti-
mization of Mixed-integer Nonlinear Programs.” User’s manual, 2005.
W. C. Tam and R. D. Blanton, “SLIDER: Simulation of Layout-Injected
Defects for Electrical Responses,” IEEE Transactions on Computer-
Aided Design, vol. 31, no. 6, pp. 918-929, June 2012.



